Akademik litsey va kasb-hunar kollejlarida funksiyaning limiti va uzluksizligini o’rganish metodikasi


Misоl. y=2x+1 funksiyasini x=2 nuqtаdаgi uzluksizligi ko`rsаtilsin Yechish


Download 225.09 Kb.
bet8/9
Sana23.06.2022
Hajmi225.09 Kb.
#773089
1   2   3   4   5   6   7   8   9
Bog'liq
limiti
Ra'no. F.Muqimova, Uvaysiy, Uvaysiy, dars ishlanma, Амали тақсими дар мавзуи “сад”, Axborot tizimlari va ularning asosiy vazifalari, Hamshiralik ishi, Hamshiralik ishi, ARXIVLASH DASTURI BILAN ISHLASH. FAYLLARNI ARXIVLASH., Hamshiralik ishi, 00076ebd-4294ca05, 3-labaratoriya-WPS Office, hisob grafik ishi 2chizma, hisob grafik ishi 2chizma, RAJABOV D MUSTQIL ISHI III
Misоl. y=2x+1 funksiyasini x=2 nuqtаdаgi uzluksizligi ko`rsаtilsin
Yechish.  (2x+1)=5; f(2)=5
Uzluksizlik tushunchаsigа e vа d tilidа quyidаgi tа’rif bеrilgаn.
1-ta’rif (Koshi ta’rifi). "e > 0 son uchun shunday d(e)>0 son topilsaki, funksiya argumenti x ning |x-x0|<d tengsizlikni qanoatlantiruvchi barcha qiymatlarida |f(x)-f(x0)|<e tengsizlik bajarilsa, f(x) funksiya x0 nuqtada uzluksiz deyiladi, f(x)=f(x0).
1-misol. Ushbu f(x)= funksiyaning x0=5 nuqtada uzluksiz ekanini ko`rsating.
Yechish. "e > 0 son olib, bu e songa ko`ra >0 soni d = 4e bo`lsin deb qaralsa, u holda |x-5|<d bo`lganda

bu esa qurilayotgan funksiyaning x0=5 nuqtada uzluksiz ekanini bildiradi.
2-ta’rif (Geyne ta’rifi). Agar X to`plamning elementlaridan tuzilgan va x0 ga intiluvchi har qanday {xn} ketma-ketlik olinganda ham funksiya qiymatlaridan tuzilgan mos {f(xn)} ketma-ketlik hamma vaqt yagona f(x0) ga intilsa, f(x) funksiya x0 nuqtada uzluksiz deb ataladi.
Agar  munosabat o`rinli bo`lsa, ushbu  munosabat ham o`rinli bo`ladi.
Odatda x-x0 ayirma argument orttirmasi, f(x)-f(x0) esa funksiyaning x0 nuqtadagi orttirmasi deyiladi. Ular mos ravishda Dx va Dy (Df(x0)) kabi belgilanadi, ya’ni: Dx=x-x0Dy=Df(x0)=f(x)-f(x0).
Demak, x=x0+DxDy=f(x0+Dx)-f(x) natijada,  munosabat  ko`rinishga ega bo’ladi.
Shunday qilib, f(x) funksiyaning x0 nuqtada uzluksizligi bu nuqtada argumentning cheksiz kichik orttirmasiga funksiyaning ham cheksiz kichik orttirmasi mos kelishi sifatida ham ta’riflanishi mumkin.

Download 225.09 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2022
ma'muriyatiga murojaat qiling