Boymurodov d. Sh telegram kanali: boymurodov d. Sh. Samarqand
Download 0.55 Mb. Pdf ko'rish
|
махсус тест
1
MAXSUS TEST – 2019.1
nuqtaga simmetrik bo'lgan nuqtani ko’rsating. A) (2019; −2019) B) (−2019; −2019) C) (−2019; 2019) D) (2019; 2019) 2. ℝ = (−∞; ∞) oraliqda monoton funksiyani ko’rsating. A) 𝑦 = 5 − 3𝑥 B) 𝑦 = 𝑥 2 − 12 C) 𝑦 = 5 − (𝑥 − 3) 2
D) 𝑦 = (𝑥 − 1) 2
log 𝑥
+ (4𝑥) log
𝑥 3 = 112 tenglamani yeching. A) √3 B) √5; 2 C) 2 D) −√3; √3 4. tg11° = 𝑎 bo’lsa, sin 22°∙ctg191° sin 79°∙cos 349° ni a orqali ifodalang. A) 2 B) 𝑎 2 C) 𝑎 𝑎 2 +1 D) 𝑎 2
𝑎
̅̅̅̅̅̅̅̅ son 72 ga qoldiqsiz bo’linsa, 𝑦(𝑥 − 3) ni hisoblang. A) 12 B) 15 C) 6 D) 24
A) 2n ta B) n+2 ta C) 3n ta D) 𝑛 2
7. dx x x 3 2 4 cos aniqmas integralni toping. A) − 1
sin(4 − 𝑥 3 ) + 𝐶 B) − 1 3 cos(4 − 𝑥 3 ) + 𝐶 C) 1
sin(4 − 𝑥 3 ) + 𝐶 D) 1 3 cos(4 − 𝑥 3 ) + 𝐶 8.
dx x x 4 3 3 sin aniqmas integralni toping. A) −
1 12 cos(3𝑥 4 ) + 𝐶 B) 1 12
4 ) + 𝐶 C) − 1
sin(3𝑥 4 ) + 𝐶 D) 1 12 sin(3𝑥 4 ) + 𝐶
9. dx x x 2 3 1 arcsin aniqmas integralni toping. A) 1
arcsin 4 𝑥 + 𝐶 B) − 1 4 arcsin 4 𝑥 + 𝐶 C) − 1
arccos 4 𝑥 + 𝐶 D) 1 4 arccos 4 𝑥 + 𝐶
10. Agar sin 𝑥 = 𝑠 va cos 𝑥 = 𝑐 bo’lsa, 3(𝑠 4 + 𝑐 4 ) −
2(𝑠 6 + 𝑐 6 ) ni toping. A) 1 B) s C) 4 D) 2c
tenglamanng ildizi 𝑥 0 bo’lsa, 𝑥 0 2 − 6 ning qiymatini toping. A) −5 B) −6 C) −7 D) 3 12. Tenglama ildizining chorak qismini toping. 120: (24: (18: (12: (6: (𝑥 + 1))))) = 15 A) 0,5 B) 0,25 C) 1 D) 0,4
𝑛 = 𝑛 2 + 3𝑛
formula bilan aniqlanadigan {𝑎 𝑛 } arifmetik progressiya uchun 𝑎 𝑛+2 𝑑 ni toping. A) n+3 B) n+1 C) 2n+3 D) n+2
orqali ifodalang. A) 3x+y−2z B) x−2y−3z C) 2x+3y+z D) 3x−y−2z 15. Agar
9 2 15
x f va
9 6 8 dx x f bo’lsa,
6 dx x f ning qiymatini toping. A) −7 B) 7 C) 23 D) −23
8100° ga burishdan hosil bo’lgan nuqta koordinatalarini toping. A) (2019; −2019) B) (−2019; −2019) C) (−2019; 2019) D) (2019; 2019) 17. Ayrim mulohazalarda o’zgaruvchilar qatnashib, shu o’zgaruvchilar o’rniga aniq qiymatlarni qo’ysak, mulohaza hosil bo’ladi. Bunday … deb ataladi. Nuqtalar o’rniga mos jumlani qo’ying. A) Predikat B) Mulohaza C) rostlik D) mantiq
𝑥 = 2 va 10 𝑦 = 3 bo’lsa, u holda ushbu 1 1∙2
+ 1 2∙3 + ⋯ + 1 15∙16 yig’indining qiymatini x va y orqali ifodalang. A) 10
B)
10 5𝑥−1−𝑦
C) 𝑦 = 1 − 2𝑥 C) 𝑦 − 1 − 5𝑥 19. Quyidag funksiylardan nechtasi ℝ = (−∞; ∞) oraliqda monoton? 2
1) 𝑦 = 𝑥 2 + 2 2) 𝑦 = 𝑥 4 − 17𝑥 2 + 16
3) 𝑦 = 5𝑥 − 0,6 4) 𝑦 = −0,6𝑥 + 5 5) 𝑦 = 𝑥 2 − 6|𝑥| + 5 A) 2 B) 1 C) 3 D) 4 20. 6 ta tekisliknig kesishishidan qanday ko’pyoq hosil bo’ladi? A) parallelepiped B) prizma C) piramida D) BJT
1 2 + 1 3 + 1 5 + 1 4 + 1 9 + 1 25 + ⋯ ) −1 yig’indini hisoblang. A)
4 19 B) 4 17 C) 19 4 D) 2 19
22. 55 sonini 10 ta har xil natural sonlar yig’indisi ko’rinishida necha xil usulda yozish mumkin? A) 1 B) 11 C) 13 D) 12
𝑥−7
1 = 𝑦−3 2 = 𝑧−9 −1 va
𝑥−3 −7 = 𝑦−1 2 = 𝑧−1 3 to’g’ri chiziqlar holatini aniqlang? A) kesishadi B) kesishmaydi C) o’zaro parallel D) o’zaro perpendikulyar
ini, ikkinchi oyda esa qolgan mahsulotining 10%ini sotishni rejalashtirgan edi. Ammo mahsulotning birinchi oyda 12%i, ikkinchi oyda esa qolgan mahsulotning 8%i sotildi. Ikki oy natijasiga ko’ra korxona rejani bajara oldimi? A) rejadan ko’p sotgan B) rejadan kam sotgan C) reja bo’yicha bir xil sotgan D) aniqlab bo’lmaydi 25. Ketma – ket kelgan 44 ta natural sonning yig’indisi 1122 ga teng. Bu sonlarning eng kattasini toping. A) 47 B) 44 C) 48 D) 49 26. 𝑓(𝑥) = 𝑥 4 − 4𝑥 3 + 22𝑥
2 − 36𝑥 + 18 funksiya biror natural sonning kvadrati bo’ladigan x natural sonni toping. A) 1; 3 B) 2; 3 C) 1; −3 D) −1; 3
va 8 qoldiq qoladigan eng kichik natural sonni toping? A) 118 B) 122 C) 88 D) 58 28. Dastlabki 200 ta natural sonlar ichida 9 ga bo’lganda 5 qoldiq qoladigan barcha sonlar yig’indisi qanday raqam bilan tugaydi? A) 4 B) 3 C) 6 D) 9 29. Nechta tub son 𝑥 6 −12𝑥 3 −13 𝑥 8 +9𝑥 6 +8 ≤ 0 tengsizlikning yechimi bo’ladi? A) 1 B) 0 C) 2 D) 3 30. P(x) ko’phad uchun 𝑃(𝑥) − 𝑃 ′ (𝑥) = (𝑥 + 1) 2
bo’lsa, P(5) ni toping. A) 50 B) 45 C) 36 D) 100
3
MAXSUS TEST – 2019.2
(𝑥−1)!
(𝑥−4)! + (𝑥+1)! (𝑥−2)! ifodani soddalashtiring. A) 2𝑥 3
2 + 10𝑥 − 6 B) 2𝑥 3 + 6𝑥
2 + 10𝑥 + 6 C) 2𝑥 3
2 − 10𝑥 − 6 D) 2𝑥 3 + 6𝑥
2 − 10𝑥 + 6 2. 100𝑥 > √10 3 lg 𝑥
tengsizlikni yeching. A) (0; 10 4 ) B) (1; 10 4 ) C) (0; 1) ∪ (1; 10 4 )
D) (10; 10 4 ) 3. (2 + √3)
𝑥 2 + (2 − √3) 𝑥 2 = 4 tenglamaning ildizlari ko’paymasini toping. A) 1 B) −1 C) 0 D) −2
𝑥 3 𝑥−2 ≤ 9𝑥 𝑥−2 tengsizlkning butun yechimlari yig’indisini toping. A) −3 B) 6 C) 0 D) −4 5. 𝑥 3 𝑥+2 ≤ 4𝑥 𝑥+2 tengsizlkning butun yechimlari yig’indisini toping. A) 3 B) −1 C) 1 D) −4 6. (√2 4 ) 4𝑥−2 = (√2)
− 2𝑥 3 tenglamani yeching. A)
1 8 B) 5 8 C) 3 8 D) − 3 8
7. ∫ 𝑥 ∙ cos 𝑥 𝑑𝑥 aniqmas integralni toping. A) 𝑥 cos 𝑥 + sin 𝑥 + 𝐶 B) 𝑥 sin 𝑥 − cos 𝑥 + 𝐶 C) 𝑥 sin 𝑥 + cos 𝑥 + 𝐶 D) 𝑥 cos 𝑥 − cos 𝑥 + 𝐶
A)
𝑥 = 2π𝑛 𝑥 =
π 11 + 2π𝑛 11 B) 𝑥 = π𝑛 𝑥 =
π 11 + 2π𝑛 11
C) 𝑥 = π + 2π𝑛 𝑥 = π
+ π𝑛 11 D) 𝑥 = 2π𝑛 𝑥 = π
+ π𝑛 11 9. (𝑎 − 𝑏) 2 − 𝑐 2 ifodaning qiymatini 𝑎 = √2 − √3, 𝑏 = √5 + √2, 𝑐 = √3 − √5 bo’lganda toping. A) −16 B) −4√15 C) 4√15 D) 16 10. Hisoblang: 2,6 ∙ 7,7 + 2,6 ∙ 3,8 + 2,4 ∙ 16,2 − 4,7 ∙ 2,4 A) 57 B) 57,5 C) 55 D) −55,6
2 + 9𝑥| = 𝑥 2 + 9𝑥 − 20 tenglamani haqiqiy ildizlarini toping. A) ∅ B) 2√11 C) ±2 D) ±√11 12. √√12 + 2√11 − √11 − 1 ni hisoblang. A) 1 B) √11 C) 0 D) −1 13. Hisoblang. 4(tg435° − tg555°) ∙ sin 2 70° ∙ sin 2 50° ∙ sin 2 10° : sin 60° A) 0,25 B) 0,025 C) 0,625 D) 0,0625 14. ∫ 𝑥 ∙ sin 2𝑥 𝑑𝑥 aniqmas integralni toping. A)
sin 2𝑥 4 − 1 2 𝑥 cos 2𝑥 + 𝐶 B) sin 2𝑥 4 + 1 2 𝑥 cos 2𝑥 + 𝐶 C) cos 2𝑥
4 − 1 2 𝑥 sin 2𝑥 + 𝐶 D) cos 2𝑥 4
1 2 𝑥 sin 2𝑥 + 𝐶 15. sin 4𝑥 = sin 3𝑥 tenglamani yeching. A)
𝑥 = π𝑛 𝑥 =
π 11 + 2π𝑛 11 B) 𝑥 = π𝑛 𝑥 =
π 7 + π𝑛 11 C) 𝑥 = 2π𝑛 𝑥 =
π 7 + 2π𝑛 7
D) 𝑥 = 2π𝑛 𝑥 = π
+ π𝑛 11 16. ∫ 𝑥 ∙ sin 4𝑥 𝑑𝑥 aniqmas integralni toping. A)
sin 4𝑥 16 − 1 4 𝑥 cos 4𝑥 + 𝐶 B) sin 4𝑥 4 + 1 4 𝑥 cos 4𝑥 + 𝐶 C) cos 4𝑥
16 − 1 4 𝑥 sin 4𝑥 + 𝐶 D) cos 4𝑥 4
1 2 𝑥 sin 4𝑥 + 𝐶 17. Agar 𝑦 = 𝑘𝑥 3 − 3 funksiyaning grafigi (−2; 9) nuqtadan o’tsa, 𝑘 =? A) 1,5 B) −1,5 C) 1 D) 4 3
18. Agar 𝑎 + 𝑏 + 𝑐 = 3, 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 = 2 bo’lsa, 𝑎 3 + 𝑏 3 + 𝑐 3 − 3𝑎𝑏𝑐 ni toping. A) 9 B) 7 C) 1 D) 10
2 + 𝑏 2 + 𝑐
2 + (𝑎 + 𝑏 + 𝑐) 2 = 8 bo’lsa, (𝑎 + 𝑏)(𝑎 + 𝑐)(𝑏 + 𝑐) ifodaning eng katta qiymatini toping. A) 16√6
3 B) 16√6 9
16√3 3 D) 16√3 9
20. Hisoblang va butun qismini toping: 27 13 + 77 19 − 93 23 . A) −1 B) 1 C) 2 D) −2 21. ((𝑥 − 3)! + (3 − 𝑥)!)! ∙ 𝑥! ifodani soddalashtiring. A) 𝑥 + 1 B) 12 C) 6 D) 24 22. 𝑎⃗(𝑥; 2) va 𝑏⃗⃗(−5; 𝑦) vektorlar parallel bo’lsa, 2xy+5 ni toping. A) −5 B) −10 C) −15 D) −20
4
23. 𝐴 = {(𝑥, 𝑦)|𝑥 2 + 𝑦
2 = 4}
va 𝐵 = {(𝑥, 𝑦)|𝑥 − 𝑦 = 4}
to’plamlar kesishmasining nechta qism – to’plami bor? A) 1 B) 2 C) 4 D) 0 24. √(𝑥 − 3) 2 + (𝑦 + 4) 2 + √𝑥
2 + 𝑦
2 ifodaning eng kichik qiymatini toping. A) 2√5 B) 5 C) 2 + √3 D) 2√3 25. a va b to’g’ri chiziqlar fazoda parallel. a chiziqda 5 ta nuqta, b chiziqda 4 ta nuqta belgilangan. Ularni birlashtirib nechta uchburchak yasash mumkin? A) 70 B) 60 C) 55 D) 45 26. 𝑦 = sin 4𝑥 + sin 5𝑥 funksiyaning davrini toping. A)
2π 5 B) π C) 2π D) π 5
27. 𝑓(𝑥) = log 2 𝑥 (log 2 𝑥 − 10) + 27 funksiyaning eng kichik qiymatini toping. A) −2 B) −5 C) 2 D) 5 28. A) 10:3 B) 3:10 C) 3:7 D) 10:7 29. |𝑥 2 − 3𝑥 + 4| ≤ |𝑥 2 − 3𝑥| tengsizlikning butun yechimlari o’rta arifmetigini toping. A) 1,4 B) 1,5 C) aniqlab bo’lmaydi D) 3 30. Tengdosh 3 ta prizmaning balandliklari 9:4:1 kabi nisbatda bo’lsa, ularning asoslari yuzlari nsibatini toping. A) 4:9:34 B) 4:9:36 C)1:4:9 D)81:16:1
A B C D M ABCD parallelogramm. AMD va BCDM shakllarning yuzalari nisbati
5:12 bo’lsa,
AM:BM ni toping. 5
MAXSUS TEST – 2019.3
burchaklaridan birining bissektrisasi to’rtburchakdan ajratgan trapetsiyaning yuzini toping.
A) 8 B) 9,5 C) 7 D) 7,5 2. Koordinatalar boshiga nisbatan 𝑦 = 3𝑥 2 − 6𝑥 + 7 funksiyaga simmetrik bo’lgan funksiyani toping. A) 𝑦 = 3𝑥 2 + 6𝑥 + 7 B) 𝑦 = −3𝑥 2 + 6𝑥 − 7 C) 𝑦 = −3𝑥 2 + 6𝑥 − 7 D) 𝑦 = −3𝑥 2 − 6𝑥 − 7 3. a va b to’g’ri chiziqlar fazoda parallel. a chiziqda 6 ta nuqta, b chiziqda 2 ta nuqta belgilangan. Ularni birlashtirib nechta uchburchak yasash mumkin? A) 36 B) 40 C) 54 D) 45 4. Chizmada bo’yalgan soha katta sohaning necha foizini tashkil etadi?
A) 30 B) 40 C) 60 D) 70 5. (𝑏 𝑛 ) geometrik progressiyada 𝑏 6 − 𝑏
3 = 112, 𝑏
5 − 𝑏 2 = 56 bo’lsa, 𝑏 1 + 𝑏
4 ni toping. A) 32 B) 36 C) 42 D) 40
√(𝑥 + 3)
2 3 + √𝑥 2 + 2𝑥 − 3
3 − 2√(𝑥 − 1) 2 3
tenglamani yeching. A) 5/9 B) 2/3 C) 1/3 D) 1/9 7. 𝐴 = {(𝑥, 𝑦)|𝑥 2 + 𝑦
2 = 4}
va 𝐵 = {(𝑥, 𝑦)|𝑥 + 𝑦 = 2}
to’plamlar kesishmasining nechta qism – to’plami bor? A) 1 B) 2 C) 4 D) 0 8. √ 𝑚𝑛𝑝+4
𝑚 + 4√
𝑛𝑝 𝑚 : (2 + √𝑚𝑛𝑝) ifodaning qiymatini 𝑚 = 0,09; 𝑛 = 0,16; 𝑝 = 0,12 bo’lganda hisoblang. A) 3
1 2 B) 3 1 3 C) 1 1 3 D) 2 1 3
9. Agar 𝑎 = √3(3+2√3) 4 bo’lsa, 2 1 2 2 1 2 a ni toping. A) 3√3 B) 1 − 3√3 C) √3 D) 3 + √3
5𝑥−12
4𝑥−15 ) −
1 9 funksiya grafigining absissasi 𝑥 0 = −3 nuqtasiga o’tkazilgan urinmasining koordinata o’qlaridan ajratgan uchburchak yuzini toping. A) 3
B) 5 4 C) 1 6 D) 5 6 11. A={1;4;5;7;8}, B={1;2;3;5;8;9;10;11;12}, C={a;b;c;d;f} to’plamlar bo’lsa, 𝑛((𝐵/𝐴 ) ∪ 𝐶) ni toping. A) 12 B)10 C) 11 D) 9 12. 𝑦 = log 3 𝑥 funksiyaning (1;0) va (3;1) nuqtalardan o’tuvchi to’g’ri chiziqqa parallel bo’lgan urinmasining burchak koeffitsiyentini toping. A) 2
B) 1 3 C) 1 2 D) 1 4 13. Silindr diagonal kesimining diagonali 15 ga, balandligi 12 ga teng bo’lsa, asosi radiusini toping. A) 4,5 B) 2√3 C) 3√2 D) 9
15 ni 8 ga bo’lgandagi qoldiqni toping. A) 1 B) 6 C) 7 D) 3 15. Agar 𝑓(𝑥) = 2 + log 3 𝑥 2 bo’lsa, 𝑓(9) = 𝑓(𝑥) − 𝑓 ( 1
) tenglamani yeching. A) 3√3 B) 3 C) √9 3 D) √3 3
toping. A)
6π 5 B) 4π 5 C) 2π 5 D) π 5
17. Uchburchakning tashqi burchaklaridan biri shu burchakka qo’shni ichki burchagidan 50° ga katta bo’lsa, qolgan ichki burchaklarining bissektrisalari orasidagi burchakni toping. A) 122,5° B) 135,5° C) 112,5° D) 105,5°
butun yechimlari nechta? A) 3 B) 4 C) 2 D) 1
6
19. 𝑎 1 = 2, 𝑎 𝑛 = 2
𝑛 ∙ 𝑎
𝑛−1 − 2 rekkurent formula bilan berilgan ketma – ketlikning 4 – hadini toping. A) 732 B) 730 C) 736 D) 734 20. Muntazam uchburchakli piramidaga konus ichki chizilgan. Agar piramidaning yon yoqlari bilan asos tekisligi orasidagi burchak 60° ga teng. Piramidaning asosiga ichki chizilgan aylananing radisui 16 ga teng bo’lsa, konusning yon sirtini toping. A) 510π B) 512π C) 256π D) 128π 21. 27 13 + 77 19 − 70 23 qaysi oraliqdagi son? A) (1;2) B) (2;3) C) (3;4) D) (4;5) 22. Hisoblang: 3,6 ∙ 4,8 + 5,4 ∙ 3,6 + 4,8 ∙ 9,2 − 4,8 ∙ 5,6 A) 54 B) 72 C) 34 D) −50
2 − 8𝑥| = 𝑥 2 − 8𝑥 + 24 tenglamaning haqiqiy ildizlari ko’paytmasini toping. A) 12 B) −4 C) 24 D) 8 24. 𝑥 2 − (𝑏 + 2)𝑥 + 𝑏 − 4 = 0 tenglamaning ildizlaridan biri b ga teng bo’lsa, 𝑥 1 2 + 𝑥 2 2 ning qiymatini toping. A) 16 B) 20 C) 18 D) aniqlab bo’lmaydi
π 7 + sin 17π
21 − sin
11π 21 + 1 ifoda qiymati kvadratini toping. A) 0 B) 1 C) ½ D) ¼ 26. Quyidagi 𝑘(𝑘 + 1)𝑥 = 𝑘 + 4(3𝑥 + 1) tenglama yechimga ega bo’lmaydigan barcha k larning o’rta arifmetigini toping. A) 0,5 B) −0,5 C) 3 D) 1 27. 𝑃(𝑥 + 3) = 𝑄(𝑥) + 𝑥 + 5 tenglik o’rinli. 𝑃(𝑥 − 2) ko’phadni 𝑥 − 6 ga bo’lgandagi qoldiq 2 ga teng bo’lsa, 𝑄(1) ni toping. A) −2 B) 3 C) −4 D) 5 28. Agar 𝑥 2 − 4𝑥 + 1 = 0 bo’lsa, 𝑥 9 + 𝑥
7 − 194𝑥
5 − 194𝑥 3 ni toping. A) −1 B) −2 C) −3 D) −4
(𝑥+𝑦−𝑧)
2 𝑥𝑦 =? A) 1 B) 2 C) 3 D) 4 30. Hisoblang: (1 − 1 2 2 ) (1 −
1 3 2 ) … (1 − 1 80 2 ) A) 81 160
B) 83 79 C) 75 71 D) 4 3
7
MAXSUS TEST – 2019.4
1 𝑎 + 1 𝑏 + 1 𝑐 = 1 𝑎+𝑏+𝑐 bo’lsa, (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑎 + 𝑐) ni toping. A) −2 B) −1 C) 0 D) 1
20∙(0,4+8∙(5−0,8∙ 5 8
1 2 ) (1 7 8 ∙8−(8,9−2,6: 2 3 ))∙34 2 5 ni hisoblang. A) 1 B) 1/2 C) 2 D) −2 3. Ifodani soddalashtiring: 𝑥−0,(3)
√𝑥 2 3 + √0,(3)𝑥 3 + √0,(1) 3 . A) √𝑥 3 − √0, (3) 3 B) √𝑥 3 + √0, (1) 3 C) 𝑥 + 0, (1) D) 𝑥 − 0, (1) 4. 2𝑥 3 − 6𝑥 + 5 = 0 tenglama nechta haqiqiy yechimga ega? A) 2 B) 3 C) 0 D) 1 5. dx x 6 0 3 2 ni hisoblang. A) 3 B) 5 C) 2 D) 1 6. Agar 2tg𝛼 − sin 𝛼 + 3 cos 𝛼 = 6 bo’lsa, cos 2𝛼 ni toping. A) −0,7 B) −0,8 C) −0,9 D) −0,1
1 8 qismini bajardi. Ikkinchi kuni 1 – kunda bajarilgan ishning 1 8
qismicha ko’p ish bajardi. Ishchi shu ikki kunda ishning qancha qismini bajardi? A) 17
B) 13 64 C) 1 4 D) 3 8 8. 0 < 𝑎 < 1 bo’lsa, 𝑦 = log 𝑎 (𝑥 − 5) funksiyaning grafigi qaysi choraklardan o’tadi? A) I, IV B) I, II C) III, IV D) I, II, IV 9. 𝑥 2 (𝑎 2 + 𝑏
2 + 9) + 2(𝑎 + 𝑏 + 3)𝑥 + 3 = 0 kvadrat tenglama haqiqiy yechimlarga ega bo’lsa, 𝑎 + 𝑏 ni toping. A) −6 B) 0 C) 4 D) 6
2 + 1 𝑥 funksiyaning 𝑥 = 1 2 nuqtadagi ∆𝑥 = 1 2
orttirmasini toping. A) −0,5 B) −0,25 C) 0,5 D) 0,25 11. 𝑎𝑥 + |𝑥|
𝑥 = 2𝑎 + 5 tenglama a ning qanday qiymat(lar)ida ikkita yechimga ega bo’ladi? A) (−3; −2) B) 𝑎 = 0 C) (2; 3) D) (−3; −1) 12. 𝑥 2 − 2020𝑥 + 2019 < 0 tengsizlikning butun yechimlari yig’indisini toping. A) 2037170 B) 2337170 C) 0 D) 1037170 13. √8 − 2√7 − √7 − 2 ni hisoblang. A) −2 B) −3 C) −1 D) 1 14. cos 12𝑥
cos 4𝑥 − sin 12𝑥 sin 4𝑥 ifodani soddalashtiring. A) −2 B) 1 C) 1 2 D) − 1 2 15. 7𝑎 2 𝑏 2 − 28𝑎
2 𝑐 2 ifodani ko’paytuvchilarga ajrating. A) 𝑎 2
2 (𝑏 − 2𝑐)(𝑏 + 2𝑐) C) 7𝑎 2
2 (2𝑏 − 𝑐)(2𝑏 + 𝑐) 16. ((𝑥 − 5)! + (5 − 𝑥)!)! ∙ (𝑥 + 2)! ni hisoblang. A) 10040 B) 12040 C) 11040 D) 10080 17. √5 = 𝑎 bo’lsa, √9,8 ni a orqali iodalang. A)
49 𝑎 B) √7 𝑎 C) 7 𝑎 D) √7𝑎 18. Agar 𝑎 + 𝑏 − 𝑐 = 7, 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐 = 5 bo’lsa, 𝑎 2 + 𝑏 2 + 𝑐 2 ni hisoblang. A) 39 B) 29 C) 49 D) 44
𝑥 funksiyaning aniqlanish sohasini toping. A) [0; 1) B) [−1; 1] C) (−∞; 0] D) (0; 1] 20. arctg (tg 6π 7 ) ni hisoblang. A) −
π 7 B) 2π 7 C) 6π 7 D) π 7
21. Chizmada bo’yalgan soha katta sohaning necha foizini tashkil etadi?
A) 30 B) 40 C) 25 D) 20 22. | 6−3𝑥
1+3𝑥 | > 0 tengsizlikni yeching. 8
A) (−∞; − 1 3 ) ∪ (− 1 3 ; 2) ∪ (2; ∞) B) (−
1 3 ; 2) ∪ (2; ∞) C) (−∞; − 1 3 ) ∪ (− 1 3 ; 2) D) (−
1 3 ; 2) 23.
Rasmda ABC uchburchak va uning BD, CE, bisektrisalari tasvirlangan. Berilgan ma’lumotlarga ko’ra 𝛼 necha gradus? A) 135,5° B) 112,5° C) 122,5° D) 105,5°
og’irligi 56,7 kg bo’lsa, kesib olingan qismning og’irligini (kg) toping. A) 145,8 B) 124,8 C) 121,7 D) 126,9 25. √10 + √24 + √40 + √60 = √𝑝 + √𝑞 + √𝑟 bo’lsa, 𝑝 + 𝑞 + 𝑟 ni toping. A) 10 B) 12 C) 9 C) 8
A) [
3 5 ; 2 3 ) B) [ 4 5 ; 2 3 ) C) [ 1 3 ; 1 2 ) D) ∅ 27. |𝑥| + |𝑦 − 1| ≤ 4 tengsizlik bilan berilgan soha yuzini toping. A) 32 B) 16 C) 4 D) 64
3 − 14𝑥 2 − 9𝑥 + 𝑎 + 2 = 0 tenglamaning 3 ta ildizidan ikkitasi qarama – qarshi sonlar bo’lsa, 𝑎 2 + 3 ni toping. A) 256 B) 259 C) 243 D) 212 29. To’g’ri burchakli trapetsiyaning yon tomonlari 6 va 12 ga teng. Agar trapetsiyaning kichik diagonali katta yon tomoniga teng bo’lsa, o’rta chizig’ini toping.
A) 9√3 B) 12√3 C) 10√3 D) 6√3 30. 𝑥 2 + 𝑎𝑥 + 5 = 0 va 𝑥 2 − 5𝑥 − 𝑎 = 0 tenglamalar umumiy yechimga ega bo’lsa, a ni toping. A) −5;6 B) 5;−6 C) −5;−6 D) −5
B x+50° 𝛼
C E D x 20°
9
MAXSUS TEST – 2019.5
60 17 1 1 1 1
c b a
tenglikni qanoatlantirsa, a+b+c+d ni toping. A) 12 B) 11 C) 10 D) 13 2. 2 𝑥 > √𝑥 tengsizlikni yeching. A) [0; 4) B) [0; 1) C) [0; ∞) D) [1; ∞) 3. tg15° − tg75° ni soddalashtiring. A) −2√3 B) √3 C) 2 D) 1 4. (1 − 2𝑥) 10 (2𝑥 + 1) 2 ko’phadning koeffitsiyentlari yig’indisini toping. A) −9 B) 9 C) 1 D) 0 5. √𝑥 2 − 9𝑥 + 20 ≤ √𝑥 − 1 − √𝑥 2 − 13 tengsizlikning butun yechimlari yig’indisini toping. A) 4 B) 1 C) 6 D) 2 6. n ning nechta natural qiymatida 𝑛 3 +3𝑛−20 2𝑛 ifoda butun qiymatlarni qabul qiladi? A) 4 ta B) 3 ta C) 2 ta D) 5 ta 7. (3 − (4 − (5 − (7 − (8 + (−1 + (3 − 8) + 6) − 2) + 8) − 13) + 4) − 8) A) 30 B) 27 C) 28 D) −30 8. 𝑦 = √(sin 𝑥 + cos 𝑥) 2 − 1
funksiyaning qiymatlari sohasini toping. A) [0; √2] B) [1; √2] C) [0; 1] D) [√2; ∞) 9. 1 𝑎−𝑏
− 1 𝑎+𝑏 − 2𝑏 𝑎 2 +𝑏 2 − 4𝑏 3 𝑎 4 +𝑏 4 − 8𝑏 7 𝑎 8 −𝑏 8 ifodani soddalshtiring. A) 0 B) 1 C) −1 D) −2 10. Agar 𝑥 = √3 2 bo’lsa, 1+𝑥
1+√1+𝑥 + 1−𝑥 1−√1−𝑥 ni hisoblang. A) 1 B) 2 C) 3 D) 4
3−𝑥
𝑥 funksiyaning aniqlanish sohasini toping. A) (0; 1) B) (−∞; 0) ∪ (1; ∞) C) (0; 3 2
D) (0; 3 2 ) 12. 367𝑋75 olti xonali son 75 ga qoldiqsiz bo’linsa, X ning barcha qiymatlari yig’indisni toping. A) 12 B) 8 C) 15 D) 10
ortomarkazidan o’tuvchi to’g’ri chiziq tenglamasi chiziq tenglamasi y=kx+b bo’lsa, [ 𝑘 𝑏 ] ni toping. Bu yerda [a] – a sonning butun qismi. A) −1 B) 0 C) 1 D) 2
(1 −
1 2 2 ) (2 − 2 3 2 ) (3 −
3 4 2 ) … (8 − 8 9 2 ) ni hisoblang. A) 5 9 ∙ 8! B) 1 9 ∙ 8! C) 7 9 ∙ 8! D) 5 7 ∙ 8! 15. 𝑓(𝑥) = (𝑥 − 2) 2 − 2
parabola uchining koordinatalari ko’paytmasini toping. A) 4 B) −4 C) 2 D) −2 16. Agar 0 < 𝛼, 𝛽 < π 2 va tg𝛼 = 3, cos 𝛽 = 1 3 bo’lsa, 2 sin 2𝛼 + cos 2𝛽 ni toping. A) 17
B) 19 45 C) 13 45 D) 13 19 17. 𝑓(𝑥) = (𝑥 2 − 𝑥 + 2)(𝑥 − 1) funksiyaning 𝑥 = 1 nuqtadagi hosilasini toping. A) 1 B) 0 C) −2 D) 2 18. |4𝑥 − 25| = 𝑥 2 + 3𝑥 + 7 tenglama nechta haqiqiy yechimga ega? A) 3 B) 4 C) 1 D) 2 19.∫ 𝑥 2 sin 𝑥 𝑑𝑥 aniqmas integralni toping. A) 20. ∫ 𝑥−1
√2𝑥−1 𝑑𝑥 aniqmas integralni toping. A) 1
(𝑥 − 2)√2𝑥 − 1 + 𝐶 B)
1 6 (𝑥 − 2)√2𝑥 − 1 + 𝐶 C) 1 3 (𝑥 + 2)√2𝑥 − 1 + 𝐶 10
D) 1
(𝑥 + 2)√2𝑥 − 1 21. cos(π𝑥) = 1 tenglama (1; 6) oraliqa nechta yechimga ega? A) 2 B) 1 C) 3 D) 4
bronza medallarini necha xil usulda olishi mumkin? A) 240 B) 720 C) 160 D) 110
lg 𝑥
2 + 11 ∙ 3
lg 𝑥 = 4 tenglamani yeching. A) 0,1 B) 0,01 C) 0,001 D) 1
yechimga ega? A) 1 B) 2 C) 0 D) 3
4 |𝑥| −2 4𝑥−2
≥ 0 tengsizlikni yeching. A) [−
1 2 ; 1 2 ) ∪ (1; +∞) B) ( 1 2 ; 1) C) [− 1 2 ; 1 2 ) ∪ ( 1 2 ; +∞) D) [− 1 2 ; 1 2 ) 26. x va y haqiqiy sonlar uchun 𝑦 2 + 2𝑥(𝑥 + 𝑦) − 8(𝑥 − 2) = 0 munosabat bajarilsa, 3𝑥𝑦
4 ning
qiymatini toping. A) −14 B) −8 C) −12 D) −15 27. Hisoblang: 0,438
0,03 + 0,072 0,12 + 0,088 0,04
A) 12,4 B) 11,2 C) 17,4 D) 11,5 28.
29.
x x x 1 0 2 cos
1 2 aniq integralni hisoblang. A) 1 2 sin 2 B) sin 2 C) − sin 2 D) 2 sin 2 30. Ikkita bo’sh ish o’rni bor. Shu o’rinlarga 7 ta ishchidan 2 tasini necha xil usulda tanlash mumkin? A) 32 B) 14 C) 7 D) 42
2 −5 −3 11
x y Chizmada 𝑓(𝑥)=kx+b funksiyaning grafigi tasvirlangan. Unga ko’ra 𝑓(3) + 𝑓(0) ni toping. A) 21 B) −12 C) 20 D) 15
11
MAXSUS TEST – 2019.6
rus tilini, x−1 tasi esa ikkalasini ham biladi. Nechta o’quvchi faqat ingliz tilini biladi? A) 12 B) 14 C) 13 D) 7 2. 𝑦 = sin 𝑥
2 − √
𝑥−2 𝑥(𝑥−2)
funksiyaning aniqlanish sohasini toping. A) [−1; 0) ∪ (0; 1] B) (−∞; 0) ∪ (0; ∞) C) (0; ∞) D) (0; 1] 3. 29 5 ∙ 6 ni 7 ga bo’lgandagi qoldiqni toping. A) 1 B) 6 C) 2 D) 5 4. f va g funksiyalar o’suvchi bo’lsa, quyidagilardan nechtasi to’g’ri? 1) f∙g ham o’suvchi; 2) f+g ham o’suvchi; 3) –f kamayuvchi; 4) g 2 ham o’suvchi; 5) f 3 ham o’suvchi. A) 2 B) 3 C) 4 D) Barchasi 5. 4(tg615° − tg375°) ∙ sin 2 70° ∙ sin 2 50° ∙ sin 2 10° : cos 330° A) 0,25 B) 0,025 C) 0,625 D) 0,0625 6. 𝑥 2 + 2020𝑥 + 2019 ≥ 0 tengsizlikning eng katta manfiy butun yechimi va eng kichik musbat butun yechimlari yig’indisini toping. A) 0 B) −2018 C) −2019 D) −1
𝑎 2 +3𝑎 𝑎−4
∙ √ 𝑎 2 −8𝑎+16 𝑎 2 +6𝑎+9 + 2𝑎 ni
soddalashtiring. A) √3 + 1 B) 2√3 − 1 C) √3 − 1 D) 1 8. √ 1+sin 𝑥
1−sin 𝑥 + √
1−sin 𝑥 1+sin 𝑥
ifodani soddalashtiring, bunda π 2 < 𝑥 < 3π 2 . A) −
2 cos 𝑥
B) − 1 cos 𝑥 C) 2 cos 𝑥 D) 1 cos 𝑥 10. ABCD parallelogrammning BC va CD tomonlarida N va M nuqtalar shunday olinganki, BN:NC=1:2 va CM:MD=2:1. Agar 𝑆 𝐴𝐵𝐶𝐷
= 72 bo’lsa, 𝑆 𝐴𝑁𝑀 =?
A) 40 B) 32 C) 24 D) 16 11. 𝑦 = ln(3𝑥 + 1) 7 − ln(7𝑥 + 1) 3 + 2 funksiya grafigining (𝑥 0 ; 𝑦 0 ) nuqtasiga o’tkazilgan urinmasi Ox o’qiga parallel bo’lsa, √𝑥 0 2 + 𝑦 0 2 =? A) 0 B) 1 C) 2 D) 4 12. 𝑦 = 2𝑥 2 − 6𝑥 + 9 funksiyaning ordinata o’qiga nisbatan simmetrik funksiyasini toping. A) 𝑦 = 2𝑥 2 + 6𝑥 + 9 B) 𝑦 = −2𝑥 2 − 6𝑥 − 9 C) 𝑦 = 2𝑥 2 − 6𝑥 − 9 D) 𝑦 = −2𝑥 2 + 6𝑥 − 9 13. { log
2 (2 − 𝑥)
2 ≥ 2
|𝑥 − 1| < 3 tengsizliklar sistemasi nechta butun yechimga ega? A) 1 B) 3 C) 2 D) cheksiz ko’p 14. Ovchining o’qni nishonga tekkizish ehtimoli 0,6 ga teng. 2 marta otilgan o’qdan birining nishonga tekkizish ehtimolini toping. A) 0,36 B) 0,84 C) 0,48 D) 0,24 15. 𝑦 = 18 𝑥 2 + 𝑥 2 2 funksiyaning eng kichik qiymatini toping. A) 3 B) 3√2 C) 6 D) 6√2 16. Charx toshi 12 minutda 12 3 5 marta aylanadi. 7 minutda qancha aylanadi? A) 7 7
B) 7 1 20 C) 6 7 20 D) 3 7 20 17. 𝑦 = sin 𝑥
2 − 3 funksiya nechta butun qiymatni qabul qiladi? A) 1 B) 2 C) 0 D) 3 18. sin (2 arcsin √3 2 ) ni hisoblang. A) −
√3 2 B) 1 2 C) − 1 2 D) √3 2
19. 𝑎 + √3 3 𝑏 = 4√3 va a, b lar ratsional sonlar bo’lsa, 𝑎 2 + 𝑏 2 ni toping. A) 124 B) 144 C) 164 D) 94 20. 1 0 3 2 1 2 1 dx x x x aniq integralni hisoblang. A) 13 B) 6,5 C) 12 D) 6
9; 𝑛 + 15; … ; 𝑛 + 123 ketma – ketligining o’n 12
birinchi hadi 67 ga teng bo’lsa, bu ketma – ketlikning 4 –hadini toping. A) 24 B) 25 C) 23 D) 20
𝑎; 𝑎 + 6; 𝑎 + 8 sonlar tub sonlar bo’ladi? A) 2 B) 1 C) 5 D) 7
5 19 1 1 1 3 n tenglik o’rinli bo’ladi? A) 3 B) 4 C) 2 D) 6
|𝑎 2 −16| 4−𝑎
− |𝑎 2 −9| 3+𝑎
− |4−𝑎
2 | 2−𝑎 ifodani 𝑎 ∈ (−2; 2) bo’lganda soddalashtiring. A) a+1 B) a−1 C) 1−a D) a
𝑥−3
√9𝑥+18−2𝑥 2 ≤ 0 tengsizlikning butun yechimlari yig’indisini toping. A) 3 B) 5 C) 6 D) 4 26. [1; 200] kesmada nechta natural son 6 ga qoldiqsiz bo’linib, 9 ga qoldiqsiz bo’linmaydi? A) 11 B) 22 C) 33 D) 20
|𝑥|+𝑥
𝑥−3 ) 2 − 14𝑥
𝑥−3 + 12 = 0 tenglamaning haqiqiy yechimini toping. A) −18; 6; 9 B) 6; −18 C) 6; 9; 18 D) 9;−18 28. 𝑥 > 0 bo’lsa, 1 5 , 0 4 2 3 2 3 3 6 2 7 x x x ni
soddalashtiring. A)
√5 2 B) √5 C) 2 D) 2√5 29. 𝑎⃗ va 𝑏⃗⃗ vektorlar kolleniar emas va 𝑎⃗ − 𝑥𝑏⃗⃗ = 𝑦𝑎⃗ + 2𝑏⃗⃗ bo’lsa, 𝑥 + 𝑦 ni toping. A) −2 B) −1 C) 1 D) 2
sin 2𝛼
1+cos 2𝛼 ∙ cos 𝛼 1+cos 𝛼 − sin 𝛼 1+cos 𝛼 + 2
A) 2 B) 1 C) sin 𝛼 − 1 D) 2 − sin 𝛼 Download 0.55 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling