Cybernetics as a science


Download 17.96 Kb.
Sana23.10.2020
Hajmi17.96 Kb.
#135909
Bog'liq
MS va MSM 60-17


"CYBERNETICS AS A SCIENCE"

Cybernetics the science of control, communications, and data processing.

Subject. The principal objects of cybernetic research are “cybernetic systems.” In general or theoretical cybernetics such systems are considered in the abstract, without reference to their real physical nature. The high level of abstraction enables cybernetics to find general methods for approaching the study of qualitatively different systemsfor example, technological, biological, and even social systems.

The abstract cybernetic system is a set of interrelated objects, called the elements of the system, that are capable of receiving, storing, and processing data, as well as exchanging them. Examples of cybernetic systems are various kinds of automatic control devices in engineering (for example, an automatic pilot or a controller that maintains a constant temperature in a room), electronic computers, the human brain, biological populations, and human society.

The elements of an abstract cybernetic system are objects of any nature whose state can be fully described by the values of a certain set of parameters. For a large majority of the concrete applications of cybernetics the consideration of parameters of two types is sufficient. Parameters of the first type, called continuous parameters, can assume any real value in a certain interval (for example, the interval from — 1 to 2 or from— ∞ to + ∞). Parameters of the second type, called discrete parameters, assume finite sets of values—for example, a value equal to any decimal number or the values “yes” or “no.”

Any whole or rational number can be represented by a sequence of discrete parameters. At the same time, discrete parameters may be used in working with qualitative attributes that are not ordinarily expressed in numbers. To do this it is sufficient to list and designate (for example, using a five-point scale) all distinguishable states of an attribute. In this way it is possible to characterize and introduce into consideration such factors as temperament, mood, and the attitude of one person toward another. By the same token, the area of application of cybernetic systems and cybernetics as a whole extends far beyond the bounds of the strictly “mathematicized” fields of knowledge.

The state of an element of a cybernetic system may change either randomly or under the influence of certain input signals that it receives either from the outside (outside the system under consideration) or from other elements of the system. In turn, each element of the system may form output signals, which usually depend on the state of the element and the input signals it receives at the moment in question. The signals are either transmitted to other elements of the system (acting as input signals for them) or form part of the output signals of the entire system that are transmitted to the outside.

The organization of relationships among elements of a cybernetic system is called the structure of the system. A distinction is made between systems with constant and variable structures. Changes in structure are usually given as functions of the states of all the constituent elements of the system and of the input signals of the system as a whole.

Thus, a description of the rules of the system’s functioning is given by three families of functions: those that determine changes in the states of all elements of the system, those that determine the elements’ output signals, and those that cause changes in the structure of the system. A system is called deterministic if all the functions are conventional (single-valued). However, if the functions—or at least some of them—are random functions, the system is called probabilistic or stochastic. A full description of a cybernetic system results if a description of the system’s initial state—that is, the initial structure of the system and the initial states of all its elements—is added to the description of the rules of its functioning.

Classification of cybernetic systems. Cybernetic systems are distinguished by the nature of their internal signals. If all the signals, like the states of all elements of the system, are given in continuous parameters, the system is called continuous. Where all the magnitudes are discrete, one speaks of a discrete system. In mixed, or hybrid, systems it is necessary to deal with both types of quantities.

The breakdown of cybernetic systems into continuous and discrete is to some extent arbitrary. It is determined by the depth of understanding achieved and by the precision required in studying the object, and sometimes by the convenience of using a particular mathematical technique in studying the system. For example, it is commonly known that light has a discrete, quantum nature; nonetheless, parameters such as the magnitude of a light flux and the level of illumination are customarily characterized by means of continuous values, since adequately smooth change in them has been provided. Another example is the ordinary slide-wire rheostat. Although the magnitude of its resistance changes by jumps, it is possible and convenient to consider the change as continuous where the jumps are small enough.

Inverse examples are even more numerous. The discharging function of the kidney on the conventional (nonquantum) level is a continuous quantity. In many cases, however, a five-point system is considered sufficient for characterizing this function; thus, it is viewed as a discrete quantity. In addition, in any actual computation of the values of continuous parameters one must be limited to a certain level of accuracy, but this means that the corresponding quantity is regarded as discrete.

The last example shows that the discrete representation is a universal method since, bearing in mind that absolute accuracy of measurement is unattainable, any continuous quantity is finally reduced to its discrete representation. Inverse reduction for discrete quantities that assume a small number of different values cannot give satisfactory results (from the point of view of precision of representation) and therefore is not used in practice. Thus, in a certain sense the discrete method of representation is more general than the continuous method.



The division of cybernetic systems into continuous and discrete types is very important from the point of view of the mathematical technique used. For continuous systems this is usually the theory of systems of ordinary differential equations, and for discrete systems it is the theory of algorithms and the theory of automatons. One other basic mathematical theory that is used in the cases of both discrete and continuous systems (and develops accordingly in two aspects) is information theory.

The complexity of cybernetic systems is determined by two factors: the first is the “dimensionality of the system”—that is, the total number of parameters that characterize the states of all its elements; the second is the complexity of the system’s structure, which is determined by the variety and total number of links among its elements. A simple set of a large number of noninterrelated elements, like a set of uniform elements with simple links that repeat from element to element, is not yet a complex system. Complex (major) cybernetic systems are systems whose descriptions cannot be reduced to a description of one element and an indication of the total number of such (uniform) elements.
Download 17.96 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling