Кинетика газовой коррозии металлов


Download 27.78 Kb.
Sana21.05.2022
Hajmi27.78 Kb.
#685172
Bog'liq
Кинетика газовой коррозии металлов.
ozbekiston osimliklar qoplami, Ta\'lim to\'g\'risidagi qonun, 4-Mavzu Arxitektura va qurilish sohasida axborotga ishlov beris, grammaticheskaya-forma-i-grammaticheskoe-znachenie-slova, 2-mavzu, OCIQ DARS5555555, Suv resurslari 8, ELITA HOUSE, 2 5267139311022642186, 10-mavzu, 2 5420175098927650527, 2- Laboratoriya mashg'uloti varyantlar, 7-amaliy mashg'ulot, QQS 2, 1

Кинетика газовой коррозии металлов.


Кинетику процесса газовой коррозии металлов можно также изучать с помощью простой манометрической установки, измеряя с помощью манометра изменение давления в замкнутом сосуде, в который помещен исследуемый образец металла. На рис. 323 показана схема простой манометрической установки. Применяют [c.440]
Особенности коррозионно-эрозионного 
разрушения металлов и сплавов в скоростных газовых потоках. При небольших скоростях газовых потоков влияние динамических эффектов на механизм и кинетику газовой коррозии незначительно. Однако при скоростях потоков, сравнимых со скоростью звукакинетическая энергия газовых молекул растет пропорционально квадрату М-числа М — число Маха, представляющее собой отношение скорости течения газа к местной скорости звука в газообразной среде) и становится сравнимой с тепловой энергией. Известно, что вблизи поверхности, обтекаемой скоростным газовым потоком, образуется пограничный слой изменения скорости, давления и температуры, в котором и определяют энергетическое воздействие среды на металл. Разрушение металлической поверхности в скоростных газовых потоках происходит вследствие механического, теплового и химического воздействия, интенсивность которых определяется составом газовой среды,
Необходимое условие образования сплошной оксидной пленки Л > 1. При Д <3 1 (щелочные и щелочно-земельные металлы (табл. 14.1)) образуется несплошная окалина и кинетика газовой коррозии описывается прямой зависимостью
Кинетику процесса газовой коррозии металлов можно также изучать с помощью простой манометрической установки, измеряя с помощью манометра изменение давления в замкнутом сосуде, в который помещен исследуемый образец металла. Законы (113) и (116) могут быть обусловлены и смешанным контролем процесса внутренней (транспорт реагентов через пленку продукта коррозии металла) и внешней (транспорт окислителя из объема коррозионной среды к поверхности этой пленки) массо-передач при соизмеримости их торможений, которое обнаруживается по влиянию скорости движения газовой среды в определенном ее интервале на кинетику окисления некоторых металлов при достаточно высокой температуре (рис. 38 и 39). Процесс коррозии металла в зависимости от свойств оксидной пленки может контролироваться объемной диффузней ионов, диффузией в газовой фазе и кинетикой реакции окисления. Таким образом, приведенный термодинамический анализ дает оценку критических допустимых концентраций окислителя, при которых поверхность металла ещ,е не подвергается окислению, но выше которых начинается газовая коррозия. Однако такой подход не позволяет определить кинетику процесса окисления и, следовательно, оценить скорость окисления. Для изделий, работающих при повышенных температурах в окислительной среде согласно формуле ( должна быть проверена прежде всего сопротивляемость паяных швов газовой коррозии. Изучение кинетики окисления металлов и сплавов показывает, что скорость их окисления во времени определяется линейной, параболической или логарифмической зависимостью и соответственно выражается следующими уравнениями [Й] Температура сырой (обводненной и обезвоженной) нефти — многообразный по проявлению фактор коррозии внутри резервуаров. Она определяет растворимость в этих средах основных коррозионных агентов (воды, кислорода, сероводорода и СО , а также, согласно химической кинетикескорость коррозионного процесса. На развитие коррозии металлов в емкостях оказывает влияние не столько температура углеводородных жидкостей, сколько разность температур между нефтью и окружающей резервуар атмосферой. Значительная разность температур между стенками резервуара и контактирующей с ними газовой средой (при полной насыщенности ее влагой и парами углеводородов) является движущей силой процесса непрерывной конденсации жидкости на кровле и внутренних стенках резервуара и, следовательно, причиной не только дополнительного обводнения хранящейся в резервуаре нефти и нефтепродуктов, но и насыщения конденсирующихся капель воды и нефтепродуктов компонентами газовой атмосферы (кислородом и сероводородом). Кинетика газовой (химической) коррозии металлов Физико-химические свойства окалины — продукта газовой коррозии — значительно влияют на кинетику процесса. При образовании плотной бездефектной окалины ход процесса определяется миграцией компонентов газовой фазы и (или) металла (сплава) сквозь нее. При этом скорость процесса в связи с увеличением толщины окалины со временем уменьшается. В данном пособии мы даем только три работы на газовую коррозию. Однако эти задачи подобраны так, что, выполнив их, учащийся сможет достаточно ознакомиться с областью и основными приемами исследования газовой коррозии экспериментальным установлением кинетики окисления металлов и определением основных законов окисления ( работа № 1,) и установлением температурной зависимости окисления (работа № 2) стандартным методом массовых испытаний жаростойкости металлов (работа № 3). Химической называют такую коррозию, когда металл вступает в прямое химическое взаимодействие с окружающей средой или с некоторыми компонентами среды. Это обычная химическая реакция, которая подчиняется законам химической кинетики гетерогенных реакцийХимическая коррозия протекает в средах, не проводящих электрического тока в сухих газах и неэлектролитах. Протекающие при этомокислительно-восстановительныереакции осуществляются путем непосредственного перехода электронов в атомы металла на окислитель, входящий в состав среды. При химической коррозии окисление металла и восстановление окисляющего агента среды происходит в одном акте. Примером химической коррозии является газовая коррозия выпускного тракта двигателей отработавшими газами. В топливной системе двигателей химическая коррозия возможна за счет взаимодействия металлов с некоторыми сернистыми соединениями, содержащимися в топливах. При химической коррозии металлов окисление металла и восстановление окислительного компонента коррозионной среды подчиняется законам химической кинетики гетерогенных реакций. Этот вид коррозии протекает в неэлектролитах и сухих газах. В авиационной технике химическая (газовая коррозия) происходит под действием высоких компонентов среды при температурах на деталях из стали, нагреваемых на несколько сотен градусов, и выражается образованием окислов металла. Среди защитных средств лакокрасочные покрытия замедляют газовую коррозию при нагреве до 500—600° С. Выше этих температур лакокрасочные покрытия не являются эффективным средством. Книга посвящена проблемам защиты металлов от коррозии ингибиторами. Рассмотрены механизм действия ингибиторов в нейтральных и кислых электролитах, адсорбция ингибиторовэлектрохимическая кинетика коррозионных процессов и пассивность металлов. Описаны защитные свойства ингибиторов и практика их применения в промышленности и быту для травления металлов, водоподготовки, защиты теплообмен,ной аппаратуры, оборудования нефтяных и газовых месторождений, изделий машиностроения и др. Рассмотренные выше результаты исследований свидетельствуют, таким образом, о перспективности использования метода кварцевого резонатора для изучения кинетики развития коррозионных процессов на металлах под адсорбционными пленками электролитов. Радиочастотный метод помимо исследования коррозионных явлений под адсорбционными пленками также может найти широкое применение в областях, связанных с изучением вопросов адсорбции коррозионно-активных веществ на металлах, газового окисления при средних температурахмеханизма действия ингибиторов коррозии и пр. Химическая коррозия протекает по законам химической кинетики в чистом виде она происходит, если на поверхности металла конденсируется вода. Примером химической коррозии является процесс окисления при высоких температурах металлической арматуры печей, клапанов двигателей внутреннего сгорания, лопаток газовых турбин, элементов электронагревателей и других деталей, а также окисление металла в жидкостях органического происхождения (спирте, бензине, нефти, мазуте и т. п.). Периодическое определение изменения массы образца металла, подвешенного на платиновой или нихромовой проволоке к чашке аналитических весов и находящегося в атмосфере электрической печи, нагретой до заданной температуры, позволяет проследить кинетику газовой коррозии металла на одном образце и установить закон роста пленки во времени (метод не пригоден при образовании на металле легко осыпающейся или возгоняющейся пленки продуктов коррозии). На рис. 320 приведена схема установки для исследования кинетики газовой коррозии металлов в воздухе и продуктах сгорания газа, которая может быть использована и при подаче в нее других газов. На установке ИФХ АН СССР (рис. 321) возможно одновременное испытание шести образцов. Поворачивая крышку печи, можно захватить крючком любой образец для взвешивания. Чтобы можно было загружать образцы, в крышке сделаны щелевидные отверстия. Более чувствительными являются вакуумные микровесы различных конструкций (Мак-Бэна, Гульбрансена и др.). Периодическое определение изменения массы образца металла, подвешенного на платиновой или нихромовой проволоке к чашке аналитических весов и находящегося в атмосфере электрической печи, нагретой до заданной температуры, позволяет проследить кинетику газовой коррознн металла на одном образце н установить закон роста пленки во времени (метод непригоден при образовании на металле легкоосыпающейся или возгоняющейся пленки продуктов коррозии). На рис. 201 приведена схема установки для исследования кинетики газовой коррозии металлов на воздухе и в продуктах сгорания газа, которая может быть использована и при подаче в нее любых газов. Более чувствительными являются вакуумные микровесы различных конструкций (Мак-Бэна, Гульбрансена и др.). В данном пособии мы даем только четыре работы по газовой коррозии. Однако эти задачи подобраны так, что, выполнив их, учащийся сможет достаточно полно ознакомиться с областью и основными приемами исследования газовой коррозии экспериментальным установлением кинетики окисления металлов и определением основных законов окисления установлением температурной зависимости скорости окисления наиболее типичным методом нспытания жаростойкости металлов и ее повышения путем легирования а также методом нанесения жаростойких (диффузионных) покрытий 
Download 27.78 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2022
ma'muriyatiga murojaat qiling