Kirish : Assosiy qism: Birinchi tur sirt integrallari


Download 270.96 Kb.
bet1/4
Sana21.05.2020
Hajmi270.96 Kb.
#108706
  1   2   3   4
Bog'liq
Stoks




Mavzu :Stoks formulasi:

Reja:

  1. Kirish :

  2. Assosiy qism:

  1. Birinchi tur sirt integrallari.

  2. Ikkinchi tur sirt integrallari.

  3. Stoks formulasi.

  1. Xulosalar:

  2. Foydalanilgan adabiyotlar.


Kirish

Ushbu kurs ishi kirish, asosiy qism, uchta paragrf, xulosa va foydalanilgan adabiyotlardan iborat.

Matematik analiz kursida birinchi tur sirt integrallari ,iikinchi tur sirt integrallari va stoks formulasiga duch kelamiz.

funksiya sirtda berilgan bo'lsin. Bu sirtning P bo‘laklashni va bu bo'laklashning har bir, bo ‘lagida ixtiyoriy nuqtadagi qiymatini ning yuziga ko'paylirib. quyidagi yig'indini tuzamiz:

1-ta'rif. Ushbu

(1)

yig ‘indi funksiyaning integral yig’indisi yoki Riman yig’indisi deb ataladi.

sirtning shunday



(2)

Bo ‘linishlarni qaraymiz ,ularning mos diametrlaridan tashkil topgan



Ketma –ketlik nolga intilsin .Bundan bo ‘linishlarga nisbatan funksiyaning integral yig ‘indilarni tuzamiz.Natijada sirtning (2) bo ‘linishlarga mos integral yig ‘indilar qiymatlaridan iborat quydagi ketma-ketlik hosil bo ‘ladi.



Birinchi tur sirt integrallari

funksiya sirtda berilgan bo'lsin. Bu sirtning P bo‘laklashni va bu bo'laklashning har bir, bo ‘lagida ixtiyoriy nuqtadagi qiymatini ning yuziga ko'paylirib. quyidagi yig'indini tuzamiz:



1-ta'rif. Ushbu

(1)

yig ‘indi funksiyaning integral yig’indisi yoki Riman yig’indisi deb ataladi.

sirtning shunday



(2)

Bo ‘linishlarni qaraymiz ,ularning mos diametrlaridan tashkil topgan



Ketma –ketlik nolga intilsin .Bundan bo ‘linishlarga nisbatan funksiyaning integral yig ‘indilarni tuzamiz.Natijada sirtning (2) bo ‘linishlarga mos integral yig ‘indilar qiymatlaridan iborat quydagi ketma-ketlik hosil bo ‘ladi.



2-ta’rifma-ketligi.Agar (S) sirtning har qanday (2) bo ‘linishlar ketma-ketligi

olinganda ham unga mos integral yig ‘indi qiymatlaridan iborat ketma –ketlik nuqtalarni tanlab olinishiga bog ‘liq bo ‘lmagan holda,



hamma vaqt bitta I songa intilsa,bu I yig ‘indining limiti deb ataladi va u

(3)

Kabi belgilanadi.

Integral yig ‘indining limitini quydagich ham ta’riflash mumkin.

3-ta’rif.Agar son olinganda ham ,shunday topilsaki,(S) sirtning diametri bo ‘lgan har qanday bo ‘linishi hamda har bir bo ‘lakdan olingan ixtiyoriy lar uchun



Tengsizlik bajarilsa , u holda I son yig ‘indining limiti deb ataladi va (3) kabi belgilanadi.

4-ta’rif.Agar da f(x,y,z) funksiyaning integral yig ‘indisi chekli limitga ega bo ‘lsa f(x,y,z ) funksiya (S) sirtning bo ‘yich integrallanuvchi (Riman ma’nosida integrallanuvchi )funksiya deb ataladi. Bu yig ‘indining chekli limiti I esa ,f(x,y,z) funksiyaning birinchi tur sirt integrali deyiladi va u



Kabi belgilanadi.Demak ,



Endi birinchi tur sirt integralining mavjud bo ‘lishini ta’minlaydigan shartni toppish bilan shug ‘ulanamiz.

Faraz qilaylik fazodagi (S) sirt

z=z(x,y)

tenglama bilan berilgan bo ‘lsin .Bunda z=z(x,y) funksiya chegaralangan yopiq (D) sohada uzluksiz va hosilalarga ega hamda bu hosilalar ham (D)da uzluksiz.

1-teorema.Agar f(x,y,z) funksiya (S) sirtda berilgan va uzluksiz bo ‘lsa , u holda bu fuksiyaning (S) sirt bo ‘yicha birinchi tur sirt integrali



mavjud va



bo ‘ladi.

Isbot.(S) sirtning bo ‘linishini olaylik . uning bo ‘laklarini

bo'lsin. Bu sirt va uning bo'laklarining Oxy tekislikdagi proeksiyasi (D) sohaning bo'laklashni va uning bo ‘laklarni hosil qiladi.

bo ‘laklashiga nisbatan (1) yig ‘indini tuzamiz.



Ma’lumki, .Bu nuqtaga akslanuvchi nuqta nuqta

bo ‘ladi.Demak , formulaga binoan



bo ‘ladi.

O ‘rta qiymat haqidagi teoremadan foydalanib topamiz:



Natijada yig ‘indi quydagi





Ko ‘rinishga keladi.

Endi da (bu holda ham nolga intiladi) yig ‘indining limitini topish maqsadida uning ifodasini o ‘zgartitib yozamiz:

(4)



Bu tenglikning o ‘ng tomonidagi ikkinchi qo ‘shiluchini baholaymiz :

Bunda



Ravshanki



Funksiya (D) da uzluksiz , desak ,demak, tekis uzluksiz. U holda Kantor

teoremasining natijasiga ko ‘ra olinganda ham shunday topiladiki,

(D) sohaning diametri bo ‘lgan har qanday bo ‘lishi uchun



bo ‘ladi.Unda

va demak

(4)tenglikning o ‘ng tomonidagi birinchi qo ‘shiluvchi

Esa


Funksiyaning integral yig ‘indisidir.Bu funksiya (D) sofada uzluksiz.Demak , da integral yig ‘indi chekli limitga ega va

Bo ‘ladi. Bu munosabatni etiborga olib (4) tenglikda da limitga o ‘tib topamiz.

Demak

Teorema isbot bo ‘ldi.



Ikkinchi tur sirt integrallari

f(x,y,z) funksiya (S) sirtda berilgan bo ‘lsin .Bu sirtning ma’lum tomoni olaylik . Sirtning P bo ‘linishini va bu bo ‘lishini har bir bo ‘lagida (k=1,2,3…..)

ixtiyoriy nuqta (k=1,2,3…..) olaylik.Berilgan funksiyaning nuqtadagi qiymatini ning Oxy tekislikdagi proeksiyasi ning yuziga ko ‘paytirib quydagi yig ‘indi tuzamiz

(5)


sirtning shunday

(6)

Bo ‘linishlarni qaraymiz ,ularning mos diametrlaridan tashkil topgan



Ketma –ketlik nolga intilsin .Bundan bo ‘linishlarga nisbatan funksiyaning integral yig ‘indilarni tuzamiz.Natijada sirtning (6) bo ‘linishlarga mos integral yig ‘indilar qiymatlaridan iborat quydagi

ketma-ketlik hosil bo ‘ladi.

5-ta’rif. Agar (S) sirtning har qanday (6) bo ‘linishlar ketma-ketligi

olinganda ham unga mos integral yig ‘indi qiymatlaridan iborat ketma –ketlik nuqtalarni tanlab olinishiga bog ‘liq bo ‘lmagan holda,



hamma vaqt bitta I songa intilsa,bu I yig ‘indining limiti deb ataladi va u

(7)

kabi belgilanadi.

Integral yig ‘indining limitini quydagich ham ta’riflash mumkin.

6-ta’rif.Agar son olinganda ham ,shunday topilsaki,(S) sirtning diametri bo ‘lgan har qanday bo ‘linishi hamda har bir bo ‘lakdan olingan ixtiyoriy lar uchun



Tengsizlik bajarilsa , u holda I son yig ‘indining limiti deb ataladi va (7) kabi belgilanadi.

7-ta’rif.Agar da f(x,y,z) funksiyaning integral yig ‘indisi chekli limitga ega bo ‘lsa f(x,y,z ) funksiya (S) sirtning bo ‘yich integrallanuvchi (Riman ma’nosida integrallanuvchi )funksiya deb ataladi. Bu yig ‘indining chekli limiti I esa ,f(x,y,z) funksiyaning ikkinchi tur sirt integrali deyiladi va u



Kabi belgilanadi.Demak ,



Funksiya ikkinchi tur sirt integrali quydagicha

(8)

Belgilashidan ,integral (S) sirtning qaysi tamoni bo ‘yicha olinganligi ko ‘rinmaydi.Binobarin (8) integral to ‘g ‘risida gap borganda ,har gal integral sirtning qaysi tamoni bo ‘yicha olinayotgani aytib boriladi.

Ravshanki f(x,y,z) funksiyaning (S) sirtning bir tamoni bo ‘yicha olingan ikkinchi tur sirt integrali ,funksiya shu sirtning ikkinchi tomoni bo ‘yicha olinga ikkinchi tur sirt integralidan faqat ishorasi bilan farq qiladi.

Ikkinchi tur sirt integralidan ta’riflanadi .

Shunday qilib ,sirtda berilgan f(x,y,z) funksiyadan uchga –Oxy tekislikdagi proeksiyalari ,Oyz tekislikdagi proeksiyalari hamda Ozx tekislikdagi proeksiyalar vositasida olingan ikkinchi tur sirt integrallari tushunchalari kiritiladi.

Umumiy holda (S) sirtda P(x,y,z),Q(x,y,z),R(x,y,z)funksiyalar berilgan bo‘lib ,ushbu

Integral mavjud bo ‘lsa u holda

Yig ‘indi ikkinchi tur sirt integralining umumiy ko ‘rinishi deb ataladi va u

Kabi belgilanadi.Demak

=

=



Faraz qilaylik fazodagi (S) sirt

z=z(x,y)

tenglama bilan berilgan bo ‘lsin .Bunda z=z(x,y) funksiya chegaralangan yopiq (D) sohada uzluksiz va hosilalarga ega hamda bu hosilalar ham (D)da uzluksiz.

Teorema. Agar f(x,y,z) funksiya (S) sirtda berilgan va uzluksiz bo ‘lsa , u holda bu fuksiyaning (S) sirt bo ‘yicha ikkinchi tur sirt integrali



mavjud va



bo ‘ladi.

Isbot. .(S) sirtning bo ‘linishini olaylik , uning bo ‘laklarini bo'lsin. Bu sirt va uning bo'laklarining Oxy tekislikdagi proeksiyasi (D) sohaning bo'laklashni va uning bo ‘laklarni hosil qiladi. bo ‘laklashiga nisbatan ushbu yig ‘indini tuzamiz:

Agar (S) sirtning ustki tomoni qaraliyotgan bo ‘lsa , u holda barcha lar musbat bo ‘ladi .

Modomiki,f(x,y,z) funksiya z=z(x,y) sirtda berilgan ekan , u x va y o‘zgaruvchilarning quydagi funksiyaga aytlanadi.

f(x,y,z)=f(x,y,z(x,y))

bundan esa

(k=1,2,3…..)

Bo ‘lishi kelib chiqadi.Natijada (5) yig ‘indi ushbu

Ko ‘rinishga keladi.bu yig ‘indi f(x,y,z(x,y)) funksiyaning integral yig ‘indisi ekani payqash qiyin emas Agar f(x,y,z(x,y))funksiyaning (D)da uzluksiz ekanligini e’tiborga olsak,unda da

Yig ‘indi chekli limitga ega bo ‘ladi va

Bundan esa

Bo ‘lishi kelib chiqadi teorema isbot bo ‘ldi.

Stoks formulasi

Mazkur punktda Grin formulasining umumlashmasi bo’lgan sirt integrali bilan egri chiziqli integralni bog’lovchi formulani keltirib chiqaramiz.

Faraz qilamiz, - sirt silliq va karrali nuqtalarga ega bo’lmasin: U bo’lakli silliq kontur bilan chegaralangan bo’lsin.



sirtni o’z ichiga oluvchi biror fazoviy sohada funksiya berilgan bo’lib, u bu sohada o’zining xususiy hosilalari bilan uzluksiz bo’lsin. U holda quyidagi

formula o’rinli.



Avval chiziq bo’yicha egri chiziqli integralni chiziq bo’yicha interalga almashtiramiz:

Bu tenglikni chiziqni ushbu


Download 270.96 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling