Koordinata o‘qlarini qaraymiz


Download 262.92 Kb.
bet1/14
Sana18.06.2022
Hajmi262.92 Kb.
#764948
  1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
Matematika 1-qism 11-sinf
file, 1. Pisa xalqaro dasturining 2012 yilgi natijalariga ko‘ra 4-o‘ri, Обмен нуклеотидов, Jismoniy shaxslardan undiriladigan mol-mulk, 3-... (1), Sinfdan tashqari ishlarni tashkil qilish va o, Sinfdan tashqari ishlarni tashkil qilish va o, tariffs ru, Заболеваемость, Analytical study of the optimum mass flow rate of 24259, Mavzu Ma\'naviyat predmeti...jj, Mavzu Ma\'naviyat predmeti...jj, Yii, 3-амал(1), 6-амал 1



i. Fazodakoordinatalarsistemasi
1.1. Fazoda dekart koordinatalar sistemasi
Tekislikda dekart koordinatalari sistemasi bilan quyi sinflarda tanishgansiz. Fazoda koordinatalar sistemasi ham tekislikdagiga o‘xshash kiritiladi. O nuqtada kesishuvchi va koordinata boshi shu nuqtada bo‘lgan o‘zaro perpendikular uchta Ox, Oy va Oz koordinata o‘qlarini qaraymiz.
Bu to‘g‘ri Chiziqlaming har bir jufti orqali Oxy, Oxz va Oyz tekisliklar o‘tkazamiz (1- rasm). Fazoda to‘g‘ri burchakli dekart koordinatalari siste­masi shu tariqa kiritiladi va unda
O nuqta - koordinatalar boshi,
Ox, Oy va Oz to‘g‘ri chiziqlar - koordinata о ‘qlari,
Ox - abssissalar, Oy - Ordinatalar va Oz o‘qi - applikatalar о ‘qi, Oxy, Oyz va Oxz tekisliklar - koordinatalar tekisliklari deb ataladi.

Koordinatalar tekisliklari fazoni 8 ta oktantaga (nimchorakka) bo‘Iadi (1- rasm).
Fazoda ixtiyoriy A nuqta berilgan bo‘lsin. Bu nuqtadan Oxy, Oyz va Oxz koordinata tekisliklariga perpendikular tekisliklar o‘tkazamiz (2- rasm). Bu tekisliklardan biri Ox o‘qini Ax nuqtada kesib o‘tadi.
Ax nuqtaning x o‘qidagi koordinatasi A nuqtaning x - koordinatasi yoki abssissasi deb ataladi.


A nuqtaning y — koordinatasi (ordinatasi) hamda z — koordinatasi (applikatasi) ham shu tariqa aniqlanadi.
A nuqtaning koordinatalari A (x; y; z) yoki qisqaroq (x; y; z) tarzda bel- gilanadi. 3- rasmda tasvirlangan nuqtalar quyidagi koordinatalarga ega: Л(0; 5; O), 5(4; O; O), M(0; 5; 4), K (2; 3; 4), P (-2; 3; -4).




  1. masala. Fazoda dekart koordinatalari sistemasi kiritilgan. Undagi 4(2; 3; 4) nuqtaning o‘mini aniqlang.

Yechish. Koordinata boshidan Ox va Oy o‘qlarining musbat yo‘nalishida, mos ravishda, OAx = 2 va OAy= 3 kesmalami qo‘yamiz (4- rasm).
Ax nuqtadan Oxy tekislikda yotgan va Oy o‘qiga parallel to‘g‘ri chiziq o‘tkazamiz. Ay nuqtadan Oxy tekislikda yotgan va Ox o‘qiga parallel to‘g‘ri chiziq o‘tkazamiz. Bu to‘g‘ri chiziqlar kesishish nuqtasini A1 bilan belgi- Iaymiz. A1 nuqtadan Oxy tekislikka perpendikular o‘tkazamiz va unda Oz o‘qining musbat yo‘nalishida AA1 = 4 kesma qo‘yamiz. Hosil bo‘lgan A (2; 3; 4) nuqta izlanayotgan nuqta bo‘ladi. П
Zamonaviy raqamli-dasturli boshqariladigan Stanoklar va avtomat- Iashtirilgan robotlar uchun koordinatalar sistemasidan foydalanib dasturlar tuziladi va ular asosida metallarga ishlov beriladi (5- rasm).



    1. Ikki nuqta Orasidagi masofa

Dddta A (X1; у Z1) va B(x2; y2; z2) nuqtalar berilgan bo‘lsin.

  1. Awal AB to‘g‘ri chiziq Oz o‘qiga parallel botImagan holni qaraymiz (6- rasm). A va B nuqtalar orqali Oz o‘qiga parallel chiziqlar o‘tkazamiz. Ular Oxy tekislikni Az va Bz nuqtalarda kesib o‘tsin.

Bu nuqtalaming z koordinatasi O ga teng bo‘lib, x vay koordinatalari esa mos ravishda^, B nuqtalaming xva у koordinatalariga teng.
Endi B nuqta orqali Oxy tekislikka parallel a tekislik o‘tkazamiz. U AAz to‘g‘ri chiziqni biror C nuqtada kesib o‘tadi.
Pifagor teoremasiga ko‘ra: AB2 = AC2 + CB2.
Lekin CB = AzBz9 AzB2 = (X2-X1)2 + (y2-jQ2 va AC = |z2-zj.
Shuning uchun AB = -J(x2 -X1)2 +(¼-^)2 +(Z2-Z1)2.

  1. AB kesma Oz o‘qiga parallel, ya’ni AB= \z2- zj bo‘lganda ham yuqoridagi formula o‘rinli botIadi, chunki bu holda X1= x2, yt = y2.

Demak, AvaB nuqtalar orasidagi masofa:

Download 262.92 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2022
ma'muriyatiga murojaat qiling