M u n d a r I j a
Download 1.8 Mb. Pdf ko'rish
|
√
2 ga teng. Shu uchburchakka tashqi chizilgan aylananing radiusini toping. A) 1 B) 2 C) 3 D) 4 E) 5 36. (02-4-48) Uchburchakning kichik tomoni 3 ga, unga tashqi chizilgan aylananing diametri esa 3 √ 2 ga teng. Uchburchakning kichik burchagini toping. A) 30 0 B) 45 0 C) 60 0 D) 75 0 E) 90 0 37. (02-4-50) Uchburchak tomonlarining uzunliklari 10, 13, va 17 ga teng. Bu uchburchakka tashqi chizilgan aylananing markazi qayerda bo’lishini aniqlang. A) uchburchak ichida B) uchburchakning kichik tomonida C) uchburchak tashqarisida D) aniqlab bo’lmaydi E) uchburchakning katta tomonida 38. (02-12-61) ABC uchburchakning C uchidagi tashqi burchagi 90 0 ga, A uchidagi tashqi burchagi 150 0 ga va kichik tomoni uzunligi 12, 5 ga teng. Shu uchburchakka tashqi chizilgan aylananing diamet- rini toping. A) 24 B) 26 C) 25 D) 23 E) 28 39. (03-1-39) To’g’ri burchakli uchburchakka tashqi chizilgan doira yuzi 49π ga, ichki chizilgan doiran- ing yuzi esa 9π ga teng. Shu uchburchakning yuzini toping. A) 49 B) 52 C) 43 D) 51 E) 57 40. (03-2-12) Radiusi 5 ga teng bo’lgan doiraga to’g’ri burchakli uchburchak ichki chizilgan. Shu uch- burchakka ichki chizilgan doiraning radiusi 1 ga teng. Uchburchakning yuzini toping. A) 12 B) 8 √ 2 C) 11 D) 22 E) 6 √ 2 41. (03-9-54) Uchburchakning ikkita burchagi 45 0 dan, unga tashqi chizilgan aylananing radiusi √ 8 ga teng. Shu uchburchakning perimetrini toping. A) 2 + √ 2 B) 2 · (2 + √ 2) C) 3 · (2 + √ 2) D) 4 · (2 + √ 2) E) 6 · (2 + √ 2) 42. (03-10-50) Uchburchakning uchlari unga tashqi chizilgan aylana to’la yoyini 1 : 2 : 3 nisbatda bo’lgan uchta bo’lakka ajratadi. Shu uchbur- chakning eng kichik tomoni 4 √ 6 ga teng bo’lsa, uning yuzini toping. A) 2 √ 3 B) 3 √ 2 C) 2 √ 2 D) 1, 5 √ 2 E) 2, 5 √ 3 43. (03-10-52) Uchburchakka tashqi chizilgan aylanan- ing uzunligi 7π ga teng. Uchburchakning katta tomoni aylananing diametriga teng bo’lsa, un- ing katta burchagidan tushirilgan medianasining uzunligini toping. A) 2, 5 B) 3 C) 3, 5 D) 4 E) 4, 5 44. (03-11-32) Uchburchakning tomonlari 5 : 7 va 8 ga teng. Bu uchburchakka tashqi chizilgan doiran- ing yuzini toping. A) 16 1 3 π B) 18 2 3 π C) 17π D) 15 2 3 π E) 15 1 3 π 45. (03-11-36) Uchburchakning burchaklaridan biri 60 0 , unga tashqi chizilgan aylana radiusi 7 √ 3 ga, ichki chizilgan aylana radiusi √ 3 ga teng. Uch- burchakning yuzini toping. A) 10 √ 3 B) 5 √ 3 C) 20 √ 3 D) 8 √ 3 E) 16 √ 3 46. (03-11-41) To’g’ri burchakli uchburchakning peri- metri va yuzasi bir xil son, ya’ni 24 bilan ifo- dalanadi. Shu uchburchakka tashqi chizilgan doi- raning yuzini toping. A) 25π B) 36π C) 16π D) 49π E) 18π 47. (03-12-30) Uchburchakning tomonlaridan biri unga tashqi chizilgan aylananing diametridan iborat. Uchburchakning eng kichik balandligi qarama - qarshi tomonni uzunliklari 9 va 16 ga teng kesma- larga ajratadi. Shu uchburchakning eng kichik tomoni uzunligini toping. A) 20 B) 15 C) 10 D) 12 E) 18 48. (03-12-85) Aylana vatarining uzunligi 10 ga teng. Shu vatarning bir uchidan aylana urinma, ikkinchi uchidan esa, urinmaga parallel qilib kesuvchi o’tka- zilgan. Agar shu kesuvchining aylana ichidagi kesmaning uzunligi 12 teng bo’lsa, aylananing ra- diusini toping. A) 6, 75 B) 8 C) 6, 5 D) 6, 25 E) 7, 5 265 49. (03-12-86) ABCD parallelogrammning BD diag- onali 2 ga, C burchagi 45 0 ga teng. CD tomon D nuqtada ABD uchburchakka tashqi chizilgan ay- lanaga urinadi. Parallelogrammning yuzini top- ing. A) 4 B) 4 √ 2 C) 8 √ 2 D) 3 √ 2 E) 7 √ 2 2 3.7.2 Kvadrat va aylana R, r− kvadratga tashqi va ichki chizilgan aylanalar radiuslari. 1. Tomoni a ga, diagonali d ga teng bo’lgan kvadratda r = a 2 , R = d 2 . 1. (96-1-48) Diagonali 2 √ 2 sm bo’lgan kvadratga aylana ichki chizilgan. Shu aylananing uzunligini hisoblang. A) 2π B) 4π C) π √ 2 D) 8π E) π √ 3 2. (96-3-11) Kvadratning tomoni 4 ga teng. Shtrixlan- gan figuraning S yuzi va P perimetrini toping (π = 3 deb hisoblansin). A) P=10sm, S=18sm 2 B) P=10sm, S=10sm 2 C) P=22sm, S=22sm 2 D) P=18sm, S=10sm 2 E) P=16sm, S=10sm 2 3. (96-11-12) Kvadratning tomoni 6 ga teng. Shtrixlan- gan figuraning S yuzi va P perimetrini toping (π = 3 deb hisoblansin). A) P=33sm, S=22,5sm 2 B) P=27sm, S=22.5sm 2 C) P=27sm, S=27sm 2 D) P=22,5sm, S=12,5sm 2 E) P=22,5sm, S=33sm 2 4. (98-5-36) Kvadratning yuzi 25 ga teng bo’lsa, unga ichki chizilgan doiraning yuzini hisoblang. A) 6π B) 6, 25π C) 5 √ 2 2 π D) 6, 16π E) 5 √ 7π 5. (99-1-38) Doiraning yuzi unga ichki chizilgan kva- dratning yuzidan necha marta katta? A) π 2 B) 2 C) 4 D) π E) 2π 6. (00-6-44) Radiusi 5 ga teng bo’lgan aylanaga mun- tazam uchburchak, uchburchakka yana aylana va aylanaga kvadrat ichki chizilgan. Kvadratning perimetrini toping. A) 10 B) 10 √ 2 C) 8 D) 8 √ 2 E) 10 √ 3 7. (03-4-49) Kvadratning tomoni 20 ga teng. Unga ichki va tashqi chizilgan aylanalar orasidagi yuzani toping. A) 96π B) 110π C) 100π D) 108π E) 98π 8. (03-11-38) Aylanaga ichki chizilgan muntazam uch- burchakning tomoni 6 ga teng. Shu aylanaga ichki chizilgan kvadratning yuzasini toping. A) 24 B) 18 C) 48 D) 36 E) 20 3.7.3 To’g’ri to’rtburchak va aylana 1. Diagonali d ga teng bo’lgan to’g’ri to’rtburchakda R = d 2 1. (97-11-31) Yuzasi 169π bo’lgan doiraga ichki chizil- gan to’g’ri to’rtburchakning bir tomoni 24 ga teng. To’g’ri to’rtburchakning ikkinchi tomonini top- ing. A) 7 B) 10 C) 5 D) 12 E) 16 2. (97-1-31) Doiraga ichki chizilgan to’g’ri to’rtbur- chakning tomonlari 12 va 16 ga teng. Doiraning yuzini toping. A) 200π B) 100π C) 400π D) 120π E) 240π 3. (97-6-31) Aylanaga ichki chizilgan to’g’ri to’rtbur- chakning tomonlari 32 va 24 ga teng. Aylananing uzunligini toping. A) 40π B) 20π C) 80π D) 48π E) 32π 4. (99-8-55) Radiusi 6 ga teng bo’lgan doiraga di- agonallari orasidagi burchagi 60 0 bo’lgan to’g’ri to’rtburchak ichki chizilgan. To’g’ri to’rtburchak- ning kichik tomonini toping. A) 6 B) 6 √ 3 C) 3 D) 4 E) 4, 8 3.7.4 Romb va aylana 1. Balandligi h ga teng bo’lgan rombda r = h 2 . (00-6-40) Diagonallari 12 va 16 ga teng bo’lgan rombga ichki chizilgan aylananing radiusini toping. A) 9, 6 B) 8 C) 6 D) 3, 6 E) 4, 8 Yechish: Rombning dioganallari uni katetlari d 1 2 , d 2 2 ga teng bo’lgan to’rtta to’g’ri burchakli uchburchakka ajratadi. Rombning tomoni bu to’g’ri burchakli uch- burchaklarning gipotenuzasi bo’ladi. Pifagor teoremasi- dan rombning a tomonini topamiz. a 2 = ³ d 1 2 ´ 2 + ³ d 2 2 ´ 2 = 6 2 + 8 2 = 100. Bu yerdan a = 10 ekani kelib chiqadi. Rombning yuzini topamiz. S = 1 2 d 1 · d 2 = 1 2 12 · 16 = 96. 266 S = ah formuladan rombning h balandligini topamiz. ah = 96, 10h = 96, h = 9, 6. Rombga ichki chizilgan aylananing r radiusi uchun h = 2r ekanidan 2r = 9, 6 va r = 4, 8 bo’ladi. J: 4,8 (E). 1. (96-3-105) Tomoni 4 sm bo’lgan rombga ichki chizilgan aylananing radiusi 1 sm. Rombning o’tkir burchagi sinusini toping. A) √ 3 2 B) √ 2 2 C) 2 3 D) 1 2 E) √ 3 4 2. (96-9-40) Tomoni 4 sm bo’lgan rombga ichki chizil- gan aylananing radiusi 1 sm. Rombning o’tkir burchagi kosinusini toping. A) 1 4 B) √ 2 3 C) 2 3 D) √ 3 4 E) √ 3 2 3. (96-9-101) Uzunligi 2π ga teng aylana o’tkir bur- chagi 30 0 bo’lgan rombga ichki chizilgan. Romb- ning perimetrini toping. A) 2 B) 10 C) 8 D) 4 E) 16 4. (96-12-109) Tomoni 6 sm bo’lgan rombga ichki chizilgan aylananing radiusi 1 sm. Rombning o’tkir burchagi kosinusini toping. A) 3 4 B) 2 √ 2 3 C) 4 5 D) √ 3 2 E) √ 5 3 5. (96-13-47) Tomoni 6 sm bo’lgan rombga ichki chizilgan aylananing radiusi 1 sm. Rombning o’tkir burchagi sinusini toping. A) 1 4 B) 1 2 C) 1 3 D) 1 5 E) 2 7 6. (97-2-30) Rombning kichik diagonali va tomoni 18 √ 3 ga teng. Rombga ichki chizilgan aylanan- ing radiusini toping. A) 13, 5 B) 27 C) 36 √ 2 D) 12 √ 3 E) 9 √ 3 7. (97-9-109) Aylanaga tashqi chizilgan parallelo- grammning bir tomoni 6 ga teng bo’lsa, uning ikkinchi tomonini toping. A) 4 B) 5 C) 6 D) 7 E) 8 8. (98-9-48) Balandligi 28 ga teng bo’lgan rombga ichki chizilgan doiraning yuzini toping. A) 198π B) 190π C) 192π D) 200π E) 196π 9. (98-11-85) Rombning tomoni unga ichki chizil- gan aylananing urinish nuqtasida 2 va 18 ga teng kesmalarga bo’linadi. Ichki chizilgan aylananing radiusini toping. A) 9 B) 10 C) 4 D) 6 E) 3 10. (99-6-17) Rombning diagonallari 6 va 8 ga teng bo’lsa, unga ichki chizilgan aylananing radiusini toping. A) 2 B) 1, 4 C) 0, 4 D) 1 E) 2, 4 11. (99-8-50) Radiusi 5 ga teng bo’lgan doiraga o’tkir burchagi 30 0 bo’lgan romb tashqi chizilgan. Romb- ning yuzini toping. A) 100 B) 240 C) 200 D) 250 E) 180 12. (01-7-56) Yuzi Q ga teng bo’lgan doiraga bur- chagi 30 0 ga teng romb tashqi chizildi. Shu romb- ning yuzini toping. A) 4Q π B) 2Q C) 4Q D) 8Q π E) 16Q π 13. (01-8-40) Diagonali orqali ikkita muntazam uch- burchakka ajraladigan rombga ichki chizilgan ay- lananing radiusi r ga teng. Rombning yuzini top- ing. A) 2r 2 √ 3 B) 4r 2 C) 4r 2 √ 3 3 D) 4r 2 √ 2 E) 8r 2 √ 3 14. (02-3-60) Yuzi Q ga teng bo’lgan doiraga o’tmas burchagi 150 0 bo’lgan romb tashqi chizilgan. Romb- ning yuzini hisoblang. A) 8Q π B) 4Q π C) 2Qπ D) 6Q π E) 3 2 πQ 15. (02-3-62) Kichik diagonali tomoniga teng bo’lgan rombga doira ichki chizilgan. Agar rombning tomoni 4 ga teng bo’lsa, bu doiraning yuzini toping. A) 3π B) 4π C) 9π D) 9π 2 E) 6π 16. (02-5-49) Tomoni 16 ga va o’tkir burchagi 30 0 ga teng rombga ichki chizilgan aylananing diametrini toping. A) 6 B) 7 C) 8 D) 9 E) 10 17. (02-9-53) Rombning dioganallari 6 va 8 ga teng. Unga ichki chizilgan doira yuzining romb yuziga nisbatini toping. A) 3π : 4 B) 3π : 8 C) 6π : 11 D) 9π : 25 E) 6π : 25 18. (02-11-59) O’tkir burchagi 150 0 ga teng bo’lgan rombga ichki chizilgan aylananing radiusi 3 ga teng. Rombning yuzini toping. A) 28 B) 72 C) 18 D) 36 E) 48 19. (03-2-13) Rombga ichki chizilgan aylananing ra- diusi 6 ga teng. Agar rombning perimetri 96 ga teng bo’lsa, uning o’tmas burchagini toping. A) 150 0 B) 120 0 C) 135 0 D) 110 0 E) 130 0 20. (03-2-51) O’tmas burchagi 135 0 bo’lgan parallel- ogrammga ichki chizilgan doiraning yuzi 9π ga teng. Parallelogrammning perimetrini toping. A) 24 B) 18 √ 2 C) 32 D) 24 √ 2 E) berilganlar etarli emas 21. (03-11-40) O’tkir burchagi 30 0 bo’lgan rombga doira ichki chizilgan. Shu doira yuzining romb yuziga nisbatini toping. A) π 8 B) π 4 C) π 6 D) π 16 E) π 2 22. (03-12-31) Parallelogrammning dioganali 8 √ 2 ga teng. Shu parallelogrammga ichki va tashqi ay- lanalar chizish mumkin bo’lsa, parallelogrammn- ing yuzini toping. A) berilganlar yetarli emas B) 32 C) 64 D) 128 E) 256 3.7.5 Trapetsiya va aylana 1. Aylanaga ichki chizilgan trapetsiya teng yonli bo’ladi. 2. r radiusli aylanaga tashqi chizilgan trapetsiyan- ing h balandligi h = 2r ga teng. 3. Aylanaga tashqi chizilgan teng yonli trapesiyan- ing yon tomoni c = a+b 2 ga teng. 267 (99-9-37) O’tkir burchagi 30 0 bo’lgan to’g’ri burchakli trapetsiya diametri 8 ga teng aylanaga tashqi chizilgan. Trapetsiyaning yuzini toping. A) 106 B) 98 C) 96 D) 104 E) 94 Yechish: Trapetsiyaning h balandligi unga ichki chizilgan aylananing diametriga teng bo’ladi. Shu sababli h = 8. Trapetsiyaning katta yon tomoni c ni topamiz. S S S S S S S S S C 30 0 h c = 8 sin30 0 = 16. Aylanaga tashqi chizilgan to’trburchak qarama-qarshi tomonlarining yig’indilari o’zaro teng ekanidan a + b = 8 + c = 8 + 16 = 24 tenglikni hosil qilamiz. U holda trapetsiyaning yuzi S = a + b 2 · h = 24 2 · 8 = 96 ga teng. J: 96 (C.) 1. (97-1-68) Radiusi √ 3 bo’lgan doiraga tashqi chizil- gan teng yonli trapetsiyaning asosidagi burchagi 60 0 . Trapetsiyaning yuzini toping. A) 8 √ 3 B) 3 C) 10 D) 3 2 E) to’g’ri javob berilmagan 2. (97-4-49) Aylanaga tashqi chizilgan teng yonli trapetsiyaning o’rta chizig’i 5 ga teng. Shu trapet- siyaning yon tomonini toping. A) 4 B) 6 C) 7 D) 5 E) 8 3. (00-8-50) Teng yonli trapetsiyaning asoslari 20 va 12 ga teng bo’lib, unga tashqi chizilgan aylanan- ing markazi katta asosda yotadi. Trapetsiyaning diagonalini toping. A) 8 √ 5 B) 4 √ 5 C) 6 √ 5 D) 16 E) 12 4. (97-6-72) Radiusi √ 3 bo’lgan doiraga o’tkir bur- chagi 60 0 bo’lgan teng yonli trapetsiya tashqi chizil- gan. Trapetsiyaning o’rta chizig’ini toping. A) 2 B) 3 C) 4 D) 5 E) 6 5. (97-6-74) ABCD trapetsiya aylanaga ichki chizil- gan. Burchak A = 120 0 , CB = 3, CD = 7. BD diagonalining uzunligini toping. A) 11 √ 2 B) √ 21 C) √ 58 D) √ 37 E) 10 √ 3 6. (98-3-40) Aylanaga tashqi chizilgan teng yonli trapetsiyaning asoslari 54 va 24 sm. Trapetsiyan- ing balandligi necha sm? A) 42 B) 40 C) 32 D) 36 E) 38 7. (98-4-7) Teng yonli trapetsiyaning asoslari 4 va 16 ga teng. Shu trapetsiyaga ichki chizilgan doiran- ing yuzini hisoblang. A) 20π B) 25π C) 36π D) 16π E) 25 4 π 8. (98-9-45) Radiusi 6 ga teng bo’lgan aylanaga teng yonli trapetsiya ichki chizilgan. Uning diagonali katta asosi bilan 30 0 li burchak tashkil qiladi hamda yon tomoniga perpendikulyar. Trapetsiyaning peri- metrini toping. A) 26 B) 34 C) 29 D) 32 E) 30 9. (98-10-26) Doiraga tashqi chizilgan teng yonli trapet- siyaning perimetri 44 ga teng. Agar doiraning radiusi 5 ga teng bo’lsa, trapetsiyaning yuzi qan- chaga teng bo’ladi? A) 200 B) 120 C) 220 D) 100 E) 110 10. (96-10-51) To’g’ri burchakli trapetsiyaga aylana ichki chizilgan. Katta yon tomoni 2 sm, o’tkir burchagi 30 0 ga teng. Aylananing uzunligini top- ing. A) 2π B) π C) 4π D) 1 2 π E) 6π 11. (98-10-87) Aylanaga tashqi chizilgan teng yonli trapetsiyaning asoslari 54 va 24 sm. Aylananing radiusi necha sm? A) 15 B) 16 C) 17 D) 18 E) 19 12. (99-3-48) Doiraga tashqi chizilgan teng yonli trapet- siyaning yuzi 18 ga teng. Agar trapetsiyaning asosidagi burchagi π 6 ga teng bo’lsa, uning yon tomonini toping. A) 6 B) 4 C) 8 D) 5 E) 3 13. (99-5-45) Burchagi 60 0 ga teng, katta asosi 10 ga teng bo’lgan teng yonli trapetsiyaga aylana ichki chizilgan. Trapetsiya kichik asosining uchi va aylana markazi orasidagi masofani toping. A) 4 √ 2 3 B) 3 √ 3 2 C) 3 2 5 D) 3 1 3 E) 4 1 5 14. (99-8-48) Aylanaga tashqi chizilgan teng yonli trapetsiyaning asoslari 18 va 8 ga teng. Aylanan- ing diametrini toping. A) 14 B) 10 C) 12 D) 11 E) 12, 4 15. (99-10-48) Radiusi 4 ga teng bo’lgan doiraga tashqi chizilgan teng yonli trapetsiyaning perimetri 40 ga teng. Trapetsiyaning kichik asosini toping. A) 3 B) 4 C) 5 D) 2 E) 6 16. (00-5-56) Yon tomoni 3 ga teng bo’lgan teng yonli trapetsiyaga doira ichki chizilgan. Agar trapet- siyaning yuzi 6 ga teng bo’lsa, bu doiraning yuzini toping. A) 2π B) 3π C) π D) π 2 E) 36π 17. (00-9-49) Teng yonli trapetsiyaning burchagi 120 0 ga, kichik asosi 8 ga teng. Shu trapetsiyaga ay- lana ichki chizilgan. Trapetsiya katta asosining uchi aylananing markazidan qanday masofada joy- lashgan? A) 8 √ 2 B) 16 √ 3 3 C) 24 √ 3 D) 6 √ 3 E) 18 √ 2 18. (01-5-45) O’tkir burchagi 30 0 bo’lgan teng yonli trapetsiyaga aylana ichki chizilgan. Aylana uzun- ligining trapetsiya perimetriga nisbatini toping. A) π 8 B) π 4 C) π 2 D) π E) 2π 268 19. (01-10-45) Asoslari 9 ga va 16 ga teng bo’lgan teng yonli trapetsiyaga aylana ichki chizilgan. Shu aylananing uzunligini toping. A) 24π B) 18π C) 12π D) 20π E) 8π 20. (02-6-51) Asoslari 9 va 36 ga teng bo’lgan teng yonli trapetsiyaga aylana ichki chizilgan. Shu ay- lana uzunligining trapetsiya perimetriga nisba- tini toping. A) π 2 B) π 3 C) π 4 D) π 5 E) π 6 21. (02-9-51) To’g’ri burchakli trapetsiyaning asoslari 6 va 4 ga teng. Unga ichki chizilgan aylananing uzunligini toping. A) 2π B) 3π C) 2, 4π D) 4, 8π E) 6π 22. (03-2-15) Yon tomoni 10 ga teng bo’lgan teng yonli trapetsiyaga radiusi 2 ga teng bo’lgan doira ichki chizilgan. Trapetsiya yuzining doira yuziga nisbatini toping. A) 4 π B) 20 π C) 5 π D) 10 Download 1.8 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling