New New Useful Inventive


Download 449 b.
Sana26.09.2018
Hajmi449 b.



New

  • New

  • Useful

  • Inventive

    • Judge made
    • Now in the Patent Act
    • plain as day”, “crystal clear”


What it is

  • What it is

    • “proper subject matter” – an “invention”, inventive
    • Obvious, very plain, plain as day, crystal clear
  • The Quantum

    • an inventive step
    • a “scintilla” of invention
  • The Path to get it/there

    • Directly and without difficulty (but lack of difficulty doesn’t mean it’s obvious)
    • Out of track with what was known at the time
  • The mind it comes from, or doesn’t

    • Inventive: the product of an inventive mind
    • Obvious: the product of a non-inventive mind


"The test for obviousness is not to ask what competent inventors did or would have done to solve the problem. Inventors are by definition inventive.”

  • "The test for obviousness is not to ask what competent inventors did or would have done to solve the problem. Inventors are by definition inventive.”

  • "The classical touchstone for obviousness is the technician skilled in the art but having no scintilla of inventiveness or imagination; a paragon of deduction and dexterity, wholly devoid of intuition; a triumph of the left hemisphere over the right. The question to be asked is whether this mythical creature (the man in the Clapham omnibus of patent law) would, in the light of the state of the art and of common general knowledge as at the claimed date of invention, have come directly and without difficulty to the solution taught by the patent.”



House of Lords in General Tire:

  • House of Lords in General Tire:

    • We agree, however, with what was said by Diplock, L.J. (as he then was) and Willmer, L.J. in the Johns-Manville case [1967] R.P.C. 478 at 493 and 496 deprecating “coining” phrases which may later be suggested to be of general application. “Obvious” is, after all, a much-used word and it does not seem to us that there is any need to go beyond the primary dictionary meaning of “very plain”.”




Key:

  • Key:

    • Black “umbra”: what’s old
    • Dark aura “penumbra”: what’s obvious
    • Yellow: what’s inventive
    • Outside the picture: what’s not “adjacently possible” (what’s impossible: can’t be done, yet)




It’s been done/taught before,

  • It’s been done/taught before,

  • in one place







(1) (a) Identify the notional “person skilled in the art”;

  • (1) (a) Identify the notional “person skilled in the art”;

  • (b) Identify the relevant common general knowledge of that person;

  • (2) Identify the inventive concept of the claim in question or, if that cannot readily be done, construe it;

  • (3) Identify what, if any, differences exist between the matter cited as forming part of the “state of the art” and the inventive concept of the claim or the claim as construed;

  • (4) Viewed without any knowledge of the alleged invention as claimed, do those differences constitute steps which would have been obvious to the person skilled in the art or do they require any degree of invention?







“Very few inventions are unexpected discoveries. Practically all research work is done by looking in directions where the “state of the art” points. On that basis and with hindsight, it could be said in most cases that there was no inventive ingenuity in the new development because everyone would then see how the previous accomplishments pointed the way. The discovery of penicillin was, of course, a major development, a great invention. After that, a number of workers went looking for other antibiotics methodically testing whole families of various microorganisms other than penicillum noatum. This research work was rewarded by the discoveries a number of antibiotics such as chloromycetin obtained from streptomyces venezuelae as mentioned in Laboratoire Pentagone v. Parke, Davis & Co. [1968] R.C.S. 307, tetracycline as mentioned in American Cyanamid Co. v. Berk Pharmaceuticals Ltd. [1976] R.P.C. 231 where Whitford J. said (at p. 257):

  • “Very few inventions are unexpected discoveries. Practically all research work is done by looking in directions where the “state of the art” points. On that basis and with hindsight, it could be said in most cases that there was no inventive ingenuity in the new development because everyone would then see how the previous accomplishments pointed the way. The discovery of penicillin was, of course, a major development, a great invention. After that, a number of workers went looking for other antibiotics methodically testing whole families of various microorganisms other than penicillum noatum. This research work was rewarded by the discoveries a number of antibiotics such as chloromycetin obtained from streptomyces venezuelae as mentioned in Laboratoire Pentagone v. Parke, Davis & Co. [1968] R.C.S. 307, tetracycline as mentioned in American Cyanamid Co. v. Berk Pharmaceuticals Ltd. [1976] R.P.C. 231 where Whitford J. said (at p. 257):

    • A patient searcher is as much entitled to the benefits of a monopoly as someone who hits upon an invention by some lucky chance or inspiration.”
      • Farbwerke Hoechst v. Halocarbon (Ontario) Limited et al (1979), 42 C.P.R. (2d) 145 (S.C.C. per Pigeon J.), at paras. 33-35.


If this works, tweak it a little and try that

  • If this works, tweak it a little and try that

  • and so on

  • and so on

  • and so on



On the one hand:

  • On the one hand:

  • “It is enough that the person versed in the art would assess the likelihood of success as sufficient to warrant actual trial”.

    • Johns-Manville Corporation’s Patent [1967] RPC 479 (per Lord Diplock) at 495 – the UK “worth a try” test


Two kinds of experiments:

  • Two kinds of experiments:

    • Ones where you already know the answer
    • Ones where you don’t know the answer


It’s been done before

  • It’s been done before

    • You’ve done it before
      • good experiments are repeatable
    • You’ve learned from others
      • good experiments are repeatable
    • AND
  • It’s highly likely to happen again

    • The sun will rise tomorrow
    • Apples fall from trees


= confirmatory experiments

  • = confirmatory experiments

  • Should not be entitled to a patent.

  • You haven’t really contributed anything new

  • The solution is obvious.



If you don’t know, you do research to find out the answer.

  • If you don’t know, you do research to find out the answer.

  • Trial and error

    • If you have errors, you went the wrong way
    • Therefore the right way wasn’t obvious or you would have done that first
    • Long recognized to be a legitimate route to a patentable invention
      • Hoescht: once penicillin discovered, try other microorganisms. That begat chloromycetin and tetracyclin – patentable
      • American Cyanamid: “a patient searcher is as much entitled to the benefits of a monopoly as someone who hits upon an invention by some lucky chance or inspriation”


How well can you predict the outcome?

  • How well can you predict the outcome?

    • They’ll tend to polarize to either end of the spectrum


Obvious to try

  • Obvious to try

    • The microorganisms after penicillin discovered
    • Not determinative: May be obvious, but may not.
  • Worth a try … but if uncertain of result, it can’t be obvious



Question: Where are my glasses?

  • Question: Where are my glasses?

  • Usual Answer: Look in the obvious places

    • Where did you last see them?
    • Where were you last?


Which is the sharpest knife in the drawer?

  • Which is the sharpest knife in the drawer?

    • One is.
    • Measure by routine testing
    • Should the identification of the sharpest knife be patentable?
      • Probably not – you’re confirming what’s is a given
  • What if it’s really sharp? Surprisingly sharper than the rest?



What is it’s melting point?

  • What is it’s melting point?

    • Merely measuring a physical characteristic
    • You’re just observing – that’s science
  • Find me an application and that might be patentable.





IKEA furniture

  • IKEA furniture

    • It can be done, but it’s not always easy
  • To implement an invention after reading a patent, you may have to play around with it a bit

  • Patent is supposed to be “enabling’ – disclose what you need to know to make it work

  • If it took “undue experimentation” to implement, the disclosure is lacking

  • Converse adopted: if there wasn’t undue experimentation to make it, it’s obvious.





“Surprise, surprise”

  • “Surprise, surprise”



Doing things backwards resulted in a patented process.

  • Doing things backwards resulted in a patented process.



Reality check: How hard was it for the inventor?

  • Reality check: How hard was it for the inventor?

    • If circuitous, it wasn’t obvious to the inventor
    • If easy, may or may not be inventive


Corn flakes case:

  • Corn flakes case:

    • Q.: Is the first person to do it an inventor?
    • A.: Not if he was just the technician working the machine.
  • Over-transmogrified into: If its merely an exercise of mechanical skills, there’s no invention.



If it’s “wow” – it’s probably an invention

  • If it’s “wow” – it’s probably an invention

  • If creative people say, “I was there and I never thought of it” – it’s probably inventive



If you can put 2 and 2 together and come up with 4, it’s obvious

  • If you can put 2 and 2 together and come up with 4, it’s obvious

  • If you don’t know the answer/solution and have to do research (even if by pedestrian means), it’s not obvious





Adjustable car pedal for drivers of different heights

  • Adjustable car pedal for drivers of different heights

  • Sensor that controlled throttle, etc.

  • Sensor attached to a fixed pivot point

  • Prior art:

    • A+B
    • A+C
    • B+C
  • Invention A+B+C



TSM:

  • TSM:

    • Teaching
    • Suggestion
    • Motivation
  • “a patent claim is only proved obvious if ‘some motivation or suggestion to combine the prior art teachings’ can be found in the prior art, the nature of the problem, or the knowledge of a person having ordinary skill in the art.”



TSM is not a rigid rule – your don’t have to have it in every case in order to find obviousness

  • TSM is not a rigid rule – your don’t have to have it in every case in order to find obviousness

  • Instead, you start with where things were and ask if it was obvious to go to the invention:

    • “The Court of Appeals considered the issue too narrowly by, in effect, asking whether a pedal designer writing on a blank slate would have chosen …”
    • “The consequent legal question, then, is whether a pedal designer of ordinary skill starting with Asano would have found it obvious to put the sensor on a fixed pivot point.”


“The combination of familiar elements according to known methods is likely to be obvious when it does no more than yield predictable results.”

  • “The combination of familiar elements according to known methods is likely to be obvious when it does no more than yield predictable results.”

  • “… when a patent claims a structure already known in the prior art that is altered by the mere substitution of one element for another known in the field, the combination must do more than yield a predictable result.”

  • “If a person of ordinary skill can implement a predictable variation, § 103 likely bars its patentability.”



“… a court must ask whether the improvement is more than the predictable use of prior art elements according to their established functions.”

  • “… a court must ask whether the improvement is more than the predictable use of prior art elements according to their established functions.”

  • “Where there is a design need or market pressure to solve a problem and there are a finite number of identified, predictable solutions, a person of ordinary skill has good reason to pursue the known options within his or her technical grasp. If this leads to the anticipated success, it is likely the product not of innovation but of ordinary skill and common sense.”



“A person of ordinary skill is also a person of ordinary creativity.”

  • “A person of ordinary skill is also a person of ordinary creativity.”

  • “And as progress beginning from higher levels of achievement is expected in the normal course, the result of ordinary innovation are not the subject of exclusive rights under the patent law.”

  • What the heck is “ordinary creativity” or “ordinary innovation”?

    • OK if: Creating something new but non-inventive?


“The proper question to have asked was whether a pedal designer of ordinary skill, facing the wide range of needs created by developments in the field of endeavor, would have seen a benefit to upgrading Asano with a sensor.”

  • “The proper question to have asked was whether a pedal designer of ordinary skill, facing the wide range of needs created by developments in the field of endeavor, would have seen a benefit to upgrading Asano with a sensor.”

  • What triggers the vision?

  • Surely doesn’t mean you ask the notional person, “Would you see a benefit doing this upgrade?

  • That’s a leading question inventors are never asked.

  • OK if: Where were we? Where was obvious to go from there?



Synergy: the whole is greater than the sum of its parts.

  • Synergy: the whole is greater than the sum of its parts.

  • THERE’S NO SUCH THING!!!!!

  • a “patent for a combination which only unites old elements with no change in their respective functions … obviously withdraws what is already known into the fiield of its monopoly and dimishes the resources available to skillful men”

  • Stuff just does what it does … but you can have a new result – example – the sailboard





“Mere possible inclusion of something within a research programme on the basis you will find out more and something might turn up is not enough. If it were otherwise there would be few inventions that were patentable. The only research which would be worthwhile (because of the prospect of protection) would be into areas totally devoid of prospect. The “obvious to try” test really only works where it is more or less self-evident that what is being tested ought to work.”

  • “Mere possible inclusion of something within a research programme on the basis you will find out more and something might turn up is not enough. If it were otherwise there would be few inventions that were patentable. The only research which would be worthwhile (because of the prospect of protection) would be into areas totally devoid of prospect. The “obvious to try” test really only works where it is more or less self-evident that what is being tested ought to work.”

      • Saint-Gobain PAM SA v. Fusion Provida Ltd., [2005] EWCA Civ 177 at para. 35 (per Lord Jacob).




UK Johns-Manville 1967 Diplock L.J.:

  • UK Johns-Manville 1967 Diplock L.J.:

    • It’s obvious if it is:
      • obvious to try” and
      • “It is enough that the person versed in the art would assess the likelihood of success as sufficient to warrant actual trial...”
  • 1972 Technograph case Sach L.J.:

    • “He would be expected to try out all obvious modifications or combinations of these methods which seemed to him worth trying."


Collier J.:

  • Collier J.:

    • "Mr. Sim sparred at some length with Dr. Schmutzler, pressing and exploring the hypothesis that the liquid phase process was, to a skilled person, "worth a try". Using the magnifying spectacles of hind-sight (a half borrowed phrase), it is easy to say that any experiment, if time and expense are unlimited … is or was worth a try."
    • “Using a paraphrase of the “Cripps question”: Was it for all practical purposes obvious to any skilled chemist in the state of chemical knowledge existing at the date of the invention, which consists of the chemical literature available and his general knowledge, particularly in the filed of fluorine chemistry, that he would successfully produce isohalothane (assuming the monomer used here and the hydrogen bromide) in the liquid phase? …


Federal Court of Appeal, Jackett C.J.:

  • Federal Court of Appeal, Jackett C.J.:

    • “The learned trial judge appears to have proceeded upon the assumption that the requirement of “inventive ingenuity”, is satisfied unless the “state of the art” at the time of the alleged invention was such that it would have been obvious to any skilled chemist “that he would successfully produce isohalothane (assuming the monomer used here and hydrogen bromide) in the ‘liquid phase’.” (The italics are mine.) I do not think that the learned trial judge’s assumption is correct as a universal rule. I would not hazard a definition of what is involved in the requirement of “inventive ingenuity: but, as it seems to me, the requirement of “inventive ingenuity”, is not met in a the circumstances of the claim in question where the “state of the art” points to a process and all the alleged inventor has done is ascertain whether or not the process will work successfully.”


In my view this statement of the requirement of inventive ingenuity puts it much too high. Very few inventions are unexpected discoveries. Practically all research work is done by looking in directions where the “state of the art” points. On that basis and with hindsight, it could be said in most cases that there was no inventive ingenuity in the new development because everyone would then see how the previous accomplishments pointed the way. The discovery of penicillin was, of course, a major development, a great invention. After that, a number of workers went looking for other antibiotics methodically testing whole families of various microorganisms other than penicillum noatum. This research work was rewarded by the discoveries a number of antibiotics such as chloromycetin obtained from streptomyces venezuelae as mentioned in Laboratoire Pentagone v. Parke, Davis & Co. [1968] R.C.S. 307, tetracycline as mentioned in American Cyanamid Co. v. Berk Pharmaceuticals Ltd. [1976] R.P.C. 231 where Whitford J. said (at p. 257):

  • In my view this statement of the requirement of inventive ingenuity puts it much too high. Very few inventions are unexpected discoveries. Practically all research work is done by looking in directions where the “state of the art” points. On that basis and with hindsight, it could be said in most cases that there was no inventive ingenuity in the new development because everyone would then see how the previous accomplishments pointed the way. The discovery of penicillin was, of course, a major development, a great invention. After that, a number of workers went looking for other antibiotics methodically testing whole families of various microorganisms other than penicillum noatum. This research work was rewarded by the discoveries a number of antibiotics such as chloromycetin obtained from streptomyces venezuelae as mentioned in Laboratoire Pentagone v. Parke, Davis & Co. [1968] R.C.S. 307, tetracycline as mentioned in American Cyanamid Co. v. Berk Pharmaceuticals Ltd. [1976] R.P.C. 231 where Whitford J. said (at p. 257):

      • “A patient searcher is as much entitled to the benefits of a monopoly as someone who hits upon an invention by some lucky chance or inspiration.”




If any research (learning something new) is needed, the invention is not obvious

  • If any research (learning something new) is needed, the invention is not obvious

  • “Undue experimentation”

    • renders a discovery non-obvious
    • less than undue experimentation makes it obvious
  • If the result of the experimental is highly predictable or the result expected (the experiment is confirmatory rather than exploratory), then the result is obvious.



Saint-Gobain PAM SA v. Fusion Provida Ltd. per Jacob:

  • Saint-Gobain PAM SA v. Fusion Provida Ltd. per Jacob:

    • “Mere possible inclusion of something within a research programme on the basis you will find out more and something might turn up is not enough. If it were otherwise there would be few inventions that were patentable. The only research which would be worthwhile (because of the prospect of protection) would be into areas totally devoid of prospect. The “obvious to try” test really only works where it is more or less self-evident that what is being tested ought to work.”




Rejected CAFC’s restrictive TSM test

  • Rejected CAFC’s restrictive TSM test

    • Teaching
    • Suggestion
    • Motivation
  • “Consider everything” approach, including “obvious to try”:

    • “The same constricted analysis led the Court of Appeals to conclude, in error, that a patent claim cannot be proved obvious merely by showing that the combination of elements was “obvious to try”. ... When there is a design need or market pressure to solve a problem and there are a finite number of identified, predictable solutions, a person of ordinary skill has good reason to pursue the known options within his or her technical grasp. If this leads to the anticipated success, it is likely the product not of innovation but of ordinary skill and common sense. In that instance the fact that a combination was obvious to try might show that it was obvious under §103.”


“It is now clear that both jurisdictions accept that an “obvious to try” test can be relevant in an obviousness inquiry. The United States Supreme Court has now stated so explicitly in KSR. The convergence of the United Kingdom and the United States law on this issue suggests that the restrictiveness with which the Beloit test has been interpreted in Canada should be re-examined.”

  • “It is now clear that both jurisdictions accept that an “obvious to try” test can be relevant in an obviousness inquiry. The United States Supreme Court has now stated so explicitly in KSR. The convergence of the United Kingdom and the United States law on this issue suggests that the restrictiveness with which the Beloit test has been interpreted in Canada should be re-examined.”



(1) (a) Identify the notional “person skilled in the art”;

        • (1) (a) Identify the notional “person skilled in the art”;
        • (b) Identify the relevant common general knowledge of that person;
        • (2) Identify the inventive concept of the claim in question or, if that cannot readily be done, construe it;
        • (3) Identify what, if any, differences exist between the matter cited as forming part of the “state of the art” and the inventive concept of the claim or the claim as construed;
        • Viewed without any knowledge of the alleged invention as claimed, do those differences constitute steps which would have been obvious to the person skilled in the art or do they require any degree of invention?


“Obvious to try” test

  • “Obvious to try” test

    • Could be part of step #4 in cases “where advances are won by experimentation”
  • Rothstein’s Questions:

    • (1) Is it more or less self-evident that what is being tried ought to work? Are there a finite number of identified predictable solutions known to persons skilled in the art?
    • (2) What is the extent, nature and amount of effort required to achieve the invention? Are routine trials carried out or is the experimentation prolonged and arduous, such that the trials would not be considered routine? The path followed by the inventor(s) is worth examining.
    • (3) Is there a motive provided in the prior art to find the solution the patent addresses?


Rothstein’s Questions (redux):

  • Rothstein’s Questions (redux):

    • (3) What was the motive?
      • To try? To combine those references?
    • (2) How easy was it for the inventor(s)?
      • Prolonged and arduous (inventive) vs. “routine” (obvious)
    • (1) Was it predictably successful?
      • Was it“ more or less self-evident” that it “ought to work”?
      • Were there a finite number of identified predictable solutions?


Marketplace was searching for an effective, non-toxic product

  • Marketplace was searching for an effective, non-toxic product

    • [How does that make it obvious?
    • [More likely to make it non-obvious if everyone was looking and nobody found it]
  • The genus patent did not provide a specific motivation to pursue the right handed enantiomer.



What was known:

  • What was known:

    • Separation methods
    • Methods of testing properties
    • Finite number of salts
  • But the inventor took 5 months

    • That’s prolonged and arduous (inventive) vs. “routine” (obvious)?
    • [That’s a new definition for “routine”.]


Was it “more or less self-evident” that it “ought to work”?

  • Was it “more or less self-evident” that it “ought to work”?

  • (Were there a finite number of identified predictable solutions)

  • Skilled person would not have known:

    • before separating the racemate into the two isomers and testing them, that the properties of the right-handed isomer would be different than the properties of the racemate or the left-handed isomer;
    • the relative advantage of the right-handed isomer;
    • what to select or omit from the genus patent was not self-evident;
    • before trying the salts in combination with the right-handed isomer, what the bisulfate salt’s beneficial properties would be;
    • the right-handed isomer ought to work.
  • Therefore, the right-handed enantiomer salt was not obvious.





Download 449 b.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling