Nizomiy nomidagi toshkent davlat pedagogika universiteti matematika va fizika fakulteti


Download 91.56 Kb.
Sana26.03.2022
Hajmi91.56 Kb.
#615682
Bog'liq
19-Mavzu Xosmas integrallar. Integrallash sohasi chegaralanmaga Sabrina
digestive system, Sillabus Yongin xavf 98-20 MMTX, «iqtisodiyot» kafedrasi iqtisodiyot nazariyasi fanidan yozma ish - 2022-03-12T134132.027, SABRINA HOSILA YORDAMIDA FUNKSIYANI TEKSHIRISH, SABRINA FUNKSIYANING SINFLARI, sabrina aniqmas integrAL, Eyler almashtirishlari sabrina, SABRINA UZLUKSIZ FUNKSIYALAR, 2 5213215111858099268, 1-AMALIY MASHG`ULOT, 0.5 Sharofutdinova, 1 MFO\'T test yakuniy 1 — копия (2), Essay 2, Essay 1

NIZOMIY NOMIDAGI TOSHKENT DAVLAT PEDAGOGIKA UNIVERSITETI MATEMATIKA VA FIZIKA FAKULTETI
101-FA IKROMOVA SABRINANING MATEMATIK ANALIZ FANIDAN QILGAN MUSTAQIL ISHI


Mavzu: Xosmas integrallar. Integrallash sohasi chegaralanmagan xosmas integral.
[a;b] oraliqda berilgan f(x) funksiyaning aniq integrali tushunchasini kiritib batafsil o‘rgandik. Shuni ta’kidlab o‘tish kerakki, integralning bayonida oraliqning chekliligi va f(x) ning chegaralanganligi bevosita ishtirok etdi.
Endi avvalgi integral tushunchasini ma’lum ma’nolarda umumlashtirish imkoniyati bormikan degan savol tug‘uladi. Albatta, umumlashtirish shunday bo‘lishi kerakki, natijada Riman integralining asosiy xossalari o‘z kuchini saqlab qolsin. Ba’zi hollarda aniq integral tushunchasini cheksiz oraliqda aniqlangan funksiya yoki chegaralanmagan funksiya uchun umumlashtirishga to‘g‘ri keladi. Biz hozir ana shunday umumlashgan (yoki xosmas) integrallarni kiritamiz va o‘rganamiz.
Integrallash sohasi chegaralanmagan xosmas integral.
f(x) funksiya [a;+) cheksiz oraliqda aniqlangan bo‘lib, uning har qanday [a; t] chekli qismida integrallanuvchi bo‘lsin, ya’ni ixtiyoriy t (t>a) uchun ushbu

integral mavjud bo‘lsin. Bu integral berilgan f(x) funksiya uchun faqat t o‘zgaruvchining funksiyasi bo‘ladi:
.
1-ta’rif. Agar t+ da F(t) funksiyaning limiti mavjud bo‘lsa, bu limit f(x) funksiyaning [a;+) oraliqdagi xosmas integrali deyiladi va u kabi belgilanadi. Demak,
(1)
2-ta’rif. Agar t+ da F(t) funksiyaning limiti mavjud bo‘lib, u chekli bo‘lsa, (1) xosmas integral yaqinlashuvchi deyiladi, f(x) funksiya esa cheksiz [a;+) oraliqda integrallanuvchi funksiya deb ataladi.
Agar t+ da F(t) ning limiti cheksiz bo‘lsa yoki mavjud bo‘lmasa, (1) xosmas integral uzoqlashuvchi deyiladi.
1-misol. ,  , integralni yaqinlashishga tekshiring.
Yechish. Agar 1 bo‘lsa, u holda
,
Demak,

Agar =1 bo‘lsa, u holda
.
Demak, integral >1 da yaqinlashuvchi, 1 da uzoqlashuvchi ekan.
2-misol. , a>0 ni hisoblang.
Yechish.
= .
Funksiyaning oraliq bo‘yicha xosmas integrali ham yuqoridagi kabi ta’riflanadi.
f(x) funksiya da berilgan bo‘lib, bu oraliqning istalgan qismida integrallanuvchi, ya’ni

mavjud bo‘lsin.
3-ta’rif. Agar da (r) funksiyaning limiti mavjud bo‘lsa, bu limit f(x) funksiyaning oraliqdagi xosmas integrali deb ataladi va u kabi belgilanadi. Demak,
(2)
4-ta’rif. Agar da (r) funksiyaning limiti mavjud bo‘lib, u chekli bo‘lsa, (2) xosmas integral yaqinlashuvchi deyiladi, f(x) esa cheksiz oraliqda integrallanuvchi funksiya deb ataladi.
Agar da (r) ning limiti cheksiz bo‘lsa yoki mavjud bo‘lmasa, (2) integral uzoqlashuvchi deyiladi.
3-misol. ni yaqinlashishga tekshiring.
Yechish. Bu xosmas integral uzoqlashuvchi bo‘ladi, chunki da

funksiya limitga ega emas.
4-misol. ni yaqinlashishga tekshiring.
Yechish. .
Demak, integral yaqinlashuvchi va
.
Aytaylik, f(x) funksiya (-;+) da uzluksiz bo‘lsin. U holda biror c(-;+) uchun va integrallar yig‘indisi bu funksiyaning ikkala integrallash chegaralari ham cheksiz bo‘lgan xosmas integrali deyiladi va quyidagicha yoziladi: . Demak,
= +
va ta’rif bo‘yicha
= + (3)
deb qabul qilamiz.
Agar (3) dagi ikkala limit ham mavjud va chekli bo‘lsa, integral yaqinlashuvchi, aks holda uzoqlashuvchi deyiladi.
5-misol. integralni yaqinlashishga tekshiring.
Yechish. (3) formulada c=0 deb olamiz. U holda



Geometrik nuqtai nazardan yaqinlashuvchi (x)dx xosmas integral y=f(x)0 egri chiziq, x=a, y=0 to‘g‘ri chiziqlar bilan chegaralangan va Ox o‘qi yo‘nalishida cheksiz cho‘zilgan figuraning chekli S yuzaga ega ekanligini anglatadi (7-rasm). Shunga o‘xshash, va yaqinlashuvchi xosmas integrallarga ham geometrik talqin berish mumkin.

7-rasm
Foydalanilgan adabiyotlar

  1. Toshmetov O’., Turgunbayev R., Saydamatov E., Madirimov M. Matematik analiz I-qism. T.: “Extremum-Press”, 2015. -320-322 bb.

  2. Claudia Canuto, Anita Tabacco Mathematical analysis. I. Springer-Verlag. Italia, Milan. 2008.- 330-332p.

  3. Xudayberganov G., Vorisov A., Mansurov X., Shoimqulov B. Matematik analizdan ma’ruzalar. I T.:«Voris-nashriyot». 2010 y. b.

Download 91.56 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2022
ma'muriyatiga murojaat qiling