Расчет погрешностей средств измерений возникающий из за изменения напряжения питания измерительного прибора


Download 49.61 Kb.
bet1/2
Sana19.04.2023
Hajmi49.61 Kb.
#1367087
  1   2
Bog'liq
РАСЧЕТ ПОГРЕШНОСТЕЙ СРЕДСТВ ИЗМЕРЕНИЙ ВОЗНИКАЮЩИЙ ИЗ ЗА ИЗМЕНЕНИЯ НАПРЯЖЕНИЯ ПИТАНИЯ ИЗМЕРИТЕЛЬНОГО ПРИБОРА


РАСЧЕТ ПОГРЕШНОСТЕЙ СРЕДСТВ ИЗМЕРЕНИЙ ВОЗНИКАЮЩИЙ ИЗ ЗА ИЗМЕНЕНИЯ НАПРЯЖЕНИЯ ПИТАНИЯ ИЗМЕРИТЕЛЬНОГО ПРИБОРА
Оглавление

Введение
Глава 1. Классификация погрешностей измерений


1.1 По способу выражения
1.2 По способу возникновения
1.3 По характеру проявления
Глава 2. Оценка погрешности при прямых измерениях
Глава 3. Оценка погрешности при косвенных измерениях
Глава 4. Погрешность измерения и принцип неопределенности Гейзенберга
Заключение
Библиографический список
Введение

Погрешность измерения — отклонение измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой точности измерения.


Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного. Это отклонение принято называть ошибкой измерения.
На практике вместо истинного значения используют действительное значение величины х(д), то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным.
Результат любого измерения отличается от истинного значения измеряемой величины на некоторое значение, зависящее от точности средств и метода измерения, квалификации оператора, условий, при которых производится измерение. Отклонение результата измерения от истинного значения измеряемой величины называется погрешностью измерения
Глава 1. Классификация погрешностей измерений

1.1 По способу выражения


Абсолютная погрешность


Абсолютной называют погрешность, выраженную в единицах измеряемой величины. Её можно описать формулой Вместо истинного значения измеряемой величины, на практике пользуются действительным значением , которое достаточно близко к истинному, определяется экспериментальным путем и в конкретной задаче может приниматься вместо него. Из-за того, что истинное значение величины всегда неизвестно, можно лишь оценить границы, в которых лежит погрешность, с некоторой вероятностью. Такая оценка выполняется методами математической статистики.
Относительная погрешность
Относительная погрешность выражается отношением . Относительная погрешность является безразмерной величиной; её численное значение может указываться, например, в процентах.
Приведённая погрешность
Приведённая погрешность - погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле где - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке: - если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то определяется равным верхнему пределу измерений; - если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора. Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.
1.2 По способу возникновения

Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, не наглядностью прибора.


•Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
•Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.
В технике применяют приборы для измерения лишь с определённой заранее заданной точностью - основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора.
Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°C, за нормальное атмосферное давление 101,325 кПа.
Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0) *10n, где показатель степени n = 1; 0; ?1; ?2 и т.д.

1.3 По характеру проявления


Случайная погрешность


Это составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние обычно можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.
Математически случайную погрешность, как правило, можно представить белым шумом: как непрерывную случайную величину, симметричную относительно нуля, независимо реализующуюся в каждом измерении (некоррелированную по времени).
Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путём усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объёма данных стремится к 0 (закон больших чисел).
Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (см. Центральная предельная теорема). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.
Однако априорная убежденность в «нормальности» на основании Центральной предельной теоремы не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.
Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).
Систематическая погрешность
Это погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.
Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок, либо «улучшением» эксперимента.
Деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определённых условиях может носить характер как случайной, так и систематической ошибки.
Прогрессирующая (дрейфовая) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
Грубая погрешность (промах) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

Глава 2. Оценка погрешности при прямых измерениях


При прямых измерениях искомая величина определяется непосредственно по отсчетному устройству (шкале) средства измерения. В общем случае измерения проводятся по определённому методу и при помощи некоторых средств измерений. Эти компоненты несовершенны и вносят свой вклад в погрешность измерения[5]. Если тем или иным путём погрешности измерения (с конкретным знаком) удаётся найти, то она представляет собой поправку, которую просто исключают из результата. Однако достичь абсолютно точного результата измерения невозможно, и всегда остаётся некоторая «неопределённость», которую можно обозначить, оценив границы погрешности[6]. В России методики оценки погрешности при прямых измерениях стандартизированы ГОСТ Р 8.736-2011 и Р 50.2.038-2004.


В зависимости от имеющихся исходных данных и свойств оцениваемых погрешностей используют различные способы оценки. Случайная погрешность, как правило, подчиняется закону нормального распределения, для описания которого необходимо указать математическое ожидание M и среднеквадратическое отклонение σ. В связи с тем, что при измерении проводится ограниченное число наблюдений, находят только наилучшие оценки этих величин: среднее арифметическое результатов наблюдений и среднеквадратическое отклонение среднего арифметического :
Доверительные границы ε полученной таким образом оценки погрешности определяются умножением среднеквадратического отклонения на коэффициент Стьюдента t, выбранный для заданной доверительной вероятности P:

 ; 


Доверительные границы ε полученной таким образом оценки погрешности определяются умножением среднеквадратического отклонения на коэффициент Стьюдента t, выбранный для заданной доверительной вероятности P:



расчет погрешность измерение
Систематические погрешности в силу своего определения не могут быть оценены путем проведения многократных измерений. Для составляющих систематической погрешности, обусловленной несовершенством средств измерений, как правило известны только их границы, представленные, например, основной погрешностью средства измерения.
Итоговая оценка границ погрешности получается суммированием вышеприведённых «элементарных» составляющих, которые рассматриваются как случайные величины. Эта задача может быть математически решена при известных функциях распределений этих случайных величин. Однако, в случае систематической погрешности, такая функция как правило неизвестна и форму распределения этой погрешности задают как равномерную.
Основная трудность заключается в необходимости построения многомерного закона распределения суммы погрешностей, что практически невозможно уже при 3—4 составляющих. Поэтому используются приближённые формулы.
Суммарную не исключённую систематическую погрешность, когда она состоит из нескольких m компонентов, определяют по следующим формулам:


где коэффициент k для доверительной вероятности P=0,95 равен 1,1.


Суммарная погрешность измерения, определяемая случайной и систематической составляющей, оценивается как[13][8]:

  ,


 или 

Окончательный результат измерения записывается как  , где A — результат измерения ), — доверительные границы суммарной погрешности, P — доверительная вероятность.


Download 49.61 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling