Speakers’ List Version: May 1, 2014 Page 1


Authors:   Sevan Bedrossian, Hatch Ltd.; Mark N.D. Connell, Hatch Ltd.;   Abstract


Download 0.86 Mb.
Pdf ko'rish
bet15/19
Sana15.12.2019
Hajmi0.86 Mb.
1   ...   11   12   13   14   15   16   17   18   19

Authors:  
Sevan Bedrossian, Hatch Ltd.; Mark N.D. Connell, Hatch Ltd.;  
Abstract 
Alkali cracking followed by chloride-based leaching is one of the prominent methods for the rare earth element processing. 
Regeneration of the leach lixiviant, namely hydrochloric acid, is a critical operation in the process. A number of different 
process routes are available for recovery of chlorides and regeneration of hydrochloric acid. The objective of this paper is to 
discuss various recovery routes and analyze the impact of several input variables on the overall operating cost.  
 
Paper No.: 8408  
Paper Title: Chemical and biochemical options for the extraction of Rare Earth Elements (REE) from primary and 
secondary resources  
Authors:  
Sabine Kutschke, Helmholtz Institute Freiberg for Resource Technology; Johannes Raff, Helmholtz Institute Freiberg for 
Resource Technology; Christiane Scharf, Helmholtz Institute Freiberg for Resource Technology; Katrin Pollmann, Helmholtz 
Institute Freiberg for Resource Technology;  
Abstract 
The REE bearing minerals occur as a fine dispersed mixture in primary resources. But also in secondary materials, like scrap of 
magnesium alloys (they can contain between 3 to 5 mass-% REE), end-of-life products (e.g. Nd-Fe-B permanent magnets) and 
residues or solutions from the production processes, they are present in varying concentrations. One challenge of REE 
production and of their recycling is the separation of the pure elements. Therefore new hydrometallurgical methods for 
selective REE extraction and recovery are under development. Promising methods are bioleaching with acidophilic bacteria 
and fungi as well as the separation using bioligands like S-layer proteins, specific aptamers, phages with specific surface 
peptides or macrocyclic compounds.  
 
Paper No.: 8418  
Paper Title: Determination of High Concentration Rare Earth Elements in Metallurgical and Geological Samples using 
Inductively Coupled Mass Spectrometry  
Authors:  
Nicholas Turner, SGS Minerals Services; Jeff Koyanagi, SGS Minerals Services; Ashley Dunnett, SGS Minerals Services; Michael 
Ji, SGS Minerals Services;  
Abstract 
Not available. 
Paper No.: 8422  
Paper Title: Hydroxamate Collectors for Rare Earth Minerals Flotation  
Authors:  

 
Speakers’ List 
 
Version: May 1, 2014 
Page 74 of 104 
 
Liuyin Xia, Western University; Brian Hart, Western University; Saeed Chehreh Chelgani, Western University;  
Abstract 
Development work to optimize a flotation flowsheet for rare earth element (REE) recovery is underway. The original approach 
used alkyl phosphates and phosphoric acid ester as collectors to concentrate REE minerals. To improve REE recovery, 
hydroxamates as alternative collectors were investigated. In this paper, microflotation of REE minerals using naphthoyl, 
benzoyl and salicylic hydroxamates is reported. Unlike phosphate collectors, slime removal does not show a significant effect 
on REE recovery when using hydroxamates as collectors. Among the three hydoxamates, the grade of La, Ce and Nd for 
concentrates produced by salicylic hydroxamate is highest. The recovery response with Naphthoyl hydroxamate is similar to 
that of salicylic hydroxamate; good grades for La, Ce and Nd, less effective for Nd, Y and Zr. The data indicate an affinity by 
salicylic and naphthoyl hydroxamtes for LREE over the HREE minerals. In comparison, benzoyl hydroxamate indicated an 
affinity for Nd, Y and Zr. Temperature effects on REE recovery were also studied. The grade and recovery of REEs generated by 
flotation using mix of naphthoyl and benzoyl hydroxamates at elevated temperature was almost identical to the recovery using 
a mix of salicylic and benzoyl hydroxamates at room temperature.  
 
Paper No.: 8424  
Paper Title: Ucore's Bokan Dotson-Ridge Project  
Authors:  
Kenneth Collison; Collison Minecon;  
Abstract 
Presentation includes a review of the Dotson Ridge Project in Southeast Alaska. Will also discuss the use of new technology 
resulting in the mine having no tailings stored on surface at closure, the use of a nitric acid leach as opposed to sulphuric acid 
which is the industry standard, as well as efforts made to reduce GHG emissions. Ucore has completed a very positive PEA and 
are progressing now to Feasibility Study and permitting.  
 
Paper No.: 8431  
Paper Title: Electrorecycling of Critical and Value Metals from Mobile Electronics  
Authors:  
Tedd Edward Lister, Idaho National Laboratory; Peiming Wang, OLI Systems. Inc; Andre Anderko, OLI Systems;  
Abstract 
Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. 
Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare 
earth elements (REE). Effective recycling schemes should include the recovery of these critical materials. Targeted recycling of 
items containing the more of the less available critical materials could address their future criticality. This presentation will 
describe a electro-hydrometallurgy approach to efficient recycling of metals from scrap mobile electronics. The 
electrorecycling (ER) process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. 
Development of the process involved generation of E vs pH diagrams complimented with metals dissolution experiments are 
used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process 
has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 
2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Results from laboratory work will be discussed.  
 
Paper No.: 8440  
Paper Title: Are REE Exploration Companies Doing Enough and/or the Right Testwork to Prevent Plant Failure  
Authors:  
Niels Verbaan; SGS Lakefield Research; James Brown, SGS Minerals; Alex Mezei, SGS Minerals;  
Abstract 
The recent 20 years witnessed a boom and bust of the nickel laterite industry. Most notoriously is the story of BHP?s 
Raventhorpe operation. Many hard lessons were learned by the industry and it has been widely accepted that major 
contributing factors included insufficient testing as well as limited understanding of materials handling characteristics at each 
and every stage of the flowsheet. This paper compares the current ?race to production? in the REE industry to the laterite 
industry 20 years ago and addresses the fundamental question: ?Have our clients learned from past lessons and are they doing 

 
Speakers’ List 
 
Version: May 1, 2014 
Page 75 of 104 
 
sufficient and appropriate testwork to prevent another failure?? The authors will provide the perspective of a commercial 
metallurgical laboratory that has gone through the laterite cycle and is active in the recent REE cycle.  
 
Paper No.: 8446  
Paper Title: Study of Extraction Rate of Lanthanides with Microcapsules Containing eEtractant P507  
Authors:  
Yu Jing, ; Yundong Wang, ; Hailong Hou, ;  
Abstract 
Microcapsules containing extractants have been applied to extract metal ion, metallurgy, organic acid, pesticide and herbicide. 
Using microcapsules, the difficulties of conventional liquid?liquid extraction in phase mixing and phase separation can be 
overcome. Even extractants with high viscosity can be applied conveniently. In order to encounter the difficulty of liquid-liquid 
extraction of lanthanides, polysulphone microcapsules containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester 
(P507) has been successfully prepared to decrease the resistance of mass transfer. Here, extraction rate of lanthanum, 
samarium and erbium into a microcapsule containing P507 was studied. The extraction kinetic model was proposed based on 
the interfacial reaction model accompanied by intraparticle diffusion expressed by Fick?s law. The extraction efficiency was 
analyzed using the kinetic model with the separately determined complex formation rate constant and the intraparticle 
diffusion coefficient. From the results, it was confirmed that the kinetic model could predict the experiment in microcapsule 
system. In future, it is really helpful for microcapsule to overcome the conventional difficulties in phase mixing and phase 
separation in liquid-liquid extraction.  
 
Paper No.: 8452  
Paper Title: BENEFICIATION OF RARE EARTH ELEMENT ENRICHED EUDIALYTE FROM THE NORRA KÄRR PERALKALINE 
INTRUSION WITH WET HIGH INTENSITY MAGNETIC SEPARATION  
Authors:  
Kurt Simon Forrester, GBM Minerals Engineering Consultants; Magnus Leijd, Tasman Metals Limited; Henning Holmström, 
Tasman Metals Limited; Martin Oczlon, Tasman Metals Limited; Mark Saxon, Tasman Metals Limited;  
Abstract 
This paper provides an introduction to wet high intensity magnetic separation (WHIMS) and its successful application to the 
beneficiation of rare earth element (REE) enriched eudialyte. The analysis includes an in-depth reporting of the deportment of 
key elements as well as a statistical interpretation of the relative importance of operational parameters including magnetic 
field intensity, flow velocity, and matrix loading density. Conclusions are drawn on the relative success of the technology, 
potential areas for process improvement and the direction the research continues investigate. Three original equipment 
manufacturer (OEM) technologies were subjected to series of screening and characterization tests to identify the optimal 
operating region to magnetically beneficiate eudialyte from Norra Kärr, Sweden. Upon the completion of the characterization 
test it was apparent that the Metso HGMS technology was superior with respect REE recovery and gangue rejection for the 
Norra Kärr composite. The Metso HGMS was then subjected to a series of verification tests to confirm the repeatability and 
reproducibility of the system. After the verification process the campaign culminated in a batch-continuous run to produce a 
significant quantity of mineral concentrate for mineralogical and geochemical characterisation.  
 
Paper No.: 8453  
Paper Title: RECOVERY OF LANTHANIDES FROM APATITE PHOSPHOGYPSUM  
Authors:  
Kazimierz GRABAS, Wroclaw University of Technology; Adam PAWELCZYK, Wroclaw University of Technology; Czeslaw 
MORA, Wroclaw University of Technology; Agnieszka DYONIZY, Wroclaw University of Technology; Piotr NOWAK, Wroclaw 
University of Technology; Aleksander OSTROWSKI, Hydromet Sp. z o.o., Kowary;  
Abstract 
Globalization and growing demand for limited raw material resources forced changes in the approach to their obtaining. This 
is particularly true in case of rare earths, which are regarded as the most important development indicators of modern 
techniques and technologies. To ensure safety for commodities, the European economies have been prompted to search for 
recovery of the raw materials, among others lanthanides (Ln), from sources which until recently, for technical or economic 

 
Speakers’ List 
 
Version: May 1, 2014 
Page 76 of 104 
 
reasons, were considered not enough attractive. An interesting example can apatite phosphogypsum waste dumps. The 
content of Ln in that kind of waste material amounts to 0.5-1% mas. One of the most important phosphogypsum locations in 
Poland is Lower Silesia region where a phosphoric acid chemical plant ?Wizów? operated for several dozen years. Rare Earths 
mixture is extracted from the phosphogypsum crystalline structure by a chemical treatment and then selectively separated 
from the mixture in form of individual chemical compounds. The innovative technology used in the Ln recovery tests, matches 
up to a coherent European raw materials policy supporting effective management of resources and promoting waste materials 
recycling.  
 
Paper No.: 8457  
Paper Title: Research on coordination aid-leaching technology for leaching process of refractory weathered crust 
elution-deposited rare-earth ore in China  
Authors:  
Xianping LUO, ; Caigui LUO, ; Xiaoming CHEN, ; Xuekun TANG, ;  
Abstract 
As long-term extensive exploitation, the weathered crust elution-deposited rare earth resources are of low-grade and poor 
and then difficult to leach. In the leaching process of refractory rare earth with low-grade and low ion content, the bad-tail 
phenomenon of rare earth is serious, leaching recovery is low, leaching impurity content is high, it also requires lixiviant of 
high-concentration and is of high-cost. Aimed at the above problems, coordination aid-leaching technology , which can 
strengthen leaching process, for leaching process of rare earth ore was studied in order to improve the leaching efficiency , 
enhance its utilization rate and reduce leaching cost. Taking refractory heavy rare earth ore as object, the leaching behavior of 
rare earth and aluminum was studied. The results indicated that there were obvious differences between rare earth and 
aluminum leaching process. The speed of rare earth leaching process was relatively high and obvious peaks of leaching 
concentration were found ,while the leaching speed of aluminum is low ,the leaching concentration change is small and 
concentration curve was smooth. The exchange ability of different ions on rare earth from high to low was NH4+, K+, Na+ and 
Mg+. Ore properties and leaching conditions had a great influence on leaching process. Leaching efficiency was higher in the 
conditions of low moisture content, fine rare earth sizes, high concentration of lixiviant, slow leaching speed, low pH value and 
tall ore height. While if these conditions were over a certain limit, leaching rate would greatly drop. The leaching behaviors of 
aluminum was less affected by electrolyte types, concentration and flow speed of lixiviant and other factors, but significantly 
effected by pH value. The lower pH value, the higher leaching concentration of aluminum ions. In order to strengthen leaching 
process of refractory rare earth ores, different coordination agents were added to lixiviant . As was shown from the results, 
LPC had no aid-leaching effect on rare earth leaching process. Acetylacetone, tri-Ammonium Citrate, Dihydroxysuccinic acid, 
LPD and LPF all could promote leaching. Acetylacetone and LPD had an poor aid-leaching effect. Tri-Ammonium Citrate and 
dihydroxysuccinic acid could enhance leaching rate evidently, yet they were not suitable to be selected as aid-leaching agents 
because they could increase leaching amount of aluminum ion. LPE was an optimum aid-leaching agent because it could 
enhance leaching rate and not increase leaching amount of aluminum ion, and is non-toxic and environmentally friendly. After 
isolation and purification of LPE, its effective constituent was taken as aid-leaching agent for rare earth low-grade ore and the 
results indicated that leaching rate could increase 8.38% after adding 0.10% LPF to (NH4)2SO4, and (NH4)2SO4 
concentration reduced 25%, liquid-solid ratio reduced 5%,which means that LPF had a remarkable aid-leaching effect. The 
aid-leaching mechanism showed that LPF can generate soluble coordination compound in reaction with rare earth ions, thus 
reduced the activity of the rare earth ions in leaching liquid, increased concentration difference of ion diffusion and promoted 
rare earth leaching process. It also reduced electric quantity of coordination compound, decreased electrostatic attraction of 
clay minerals to rare earth coordination ions and improve diffusion rate of rare earth.  
 
Paper No.: 8459  
Paper Title: Flotation of REE Bearing Minerals from Silicate and Carbonate Host Deposits  
Authors:  
Tony Deng, XPS Consulting and Testwork Services; Gregg Hill, XPS Consulting and Testwork Services;  
Abstract 
Flotation of rare earths is complicated by the number of mineral classes that carry rare earth elements, including carbonates, 
phosphates, and silicates that often co-occur within the same deposit. Gangue constituents often belong to the same mineral 

 
Speakers’ List 
 
Version: May 1, 2014 
Page 77 of 104 
 
classes as the rare earth minerals themselves. Chemical regimes developed for specific separations employ customized 
combinations of collectors, modifiers and depressants that are not directly translatable to other operations. For example, a 
phosphate ester - sulfosuccinamate - citric acid system developed for the separation of REE-carbonates from silicate gangue 
was not useful for the separation of REE-carbonates from carbonate gangue. The latter benefitted from a hydroxamate - 
sodium silicate system.  
 
Paper No.: 8461  
Paper Title: Recovery of REE from an apatite concentrate  
Authors:  
Kerstin Maria Forsberg, Royal Institute of Technology (KTH); Maryam Mohammadi, Royal Institute of Technology (KTH); 
Soheila Ghafarnejad Parto, Royal Institute of Technology (KTH); Joaquin Martinez De La Cruz, Royal Institute of Technology 
(KTH); Åke Rasmuson, Royal Institute of Technology (KTH);  
Abstract 
An apatite concentrate has been obtained by flotation after processing of an iron ore in northern Sweden. The present study 
aims at recovering rare earth elements (REE) in conjunction with production of fertilizers. Leaching with nitric acid, 
hydrochloric acid and sulphuric acid respectively has been studied. When leaching with sulphuric acid a large amount of 
calcium sulphate hydrates is precipitated. Leaching with nitric acid and hydrochloric acid gives similar recovery of REE. The 
nitric acid route was chosen for further investigations and the optimum acid concentration and temperature for leaching of the 
REE were determined. The REE are separated from the leach solution by precipitation after addition of ammonia by proper pH 
control. The precipitate is then re-dissolved in hydrochloric acid and the REE are recovered by solvent extraction. The 
synergistic extraction and separation of REE from hydrochloric acid solutions using mixtures of di-(2-ethylhexyl) phosphoric 
acid (D2EHPA) and 2-Ethylhexyl hydrogen-2ethylhegylphosphonate (EHEHPA) were investigated.  
 
Paper No.: 8500  
Paper Title: A High Temperature Chemical Processing Route to Recycle Spent Nd2Fe14B Magnets  
Authors:  
Dr. Prabhat Tripathy; Idaho National Laboratory ;  
Abstract 
Global Research and Developmental activities pertaining to the recovery of Rare Earth Elements (REEs) from a wide variety of 
source materials have been currently going on at a feverish pace. Consumer electronics and industrial goods, in general, and 
computer Hard Disk Drives (HDDs), in particular, form a large segment of waste materials that are currently being discarded 
as landfill materials. Pyrometallurgical processes have the necessary potential and hence can prove to be highly efficient for 
recovering and/or reprocessing the spent Nd2Fe14B (neo) magnets. Hydrining-dehydriding technique, also known as 
Hydrogen Desorption Disproportionation and Recombination (HDDR) in published literatures, can be adopted to reprocess 
the discarded magnets in an energy efficient manner. A two-stage process, involving hydriding and dehydriding, was adopted 
to quantitatively transform the coated (solid) magnets into finely powdered state. Experiments were optimized to selectively 
hydride the magnet components and not the metallic coatings, which was mostly Ni/Ni-Cu (Figure 1). Figure 1: Photograph 
showing the state of the magnet, obtained from a discarded Hard Disk Drive, after hydrogenation at 10000C. The Ni coating 
(shown) at the top, in the alumina crucible, remained intact (even maintained its metallic luster) after completion of the 
hydriding reaction. A series of experiments were carried out, at different temperatures, to selectively hydride the magnet 
components with/without the disproportionation step. Powder XRD, SEM-EDX, total hydrogen measurement and ICP-MS 
techniques were used to evaluate and characterize the hydrided and de-hydrided powder. The dehydrided powder can be 
directly processed through a powder-metallurgical route, involving compaction and sintering of the processed powder to 
dense bodies in a magnetic field, for preparing either a resin-bonded or a metal/alloy coated magnet. Adoption of HDDR 
technique not only helps recover the magnet from the waste electronics but also imparts better magnetic properties to the 
processed magnets. The presentation shall describe the detailed experimental results pertaining to the recycling of neo 
magnets, with different chemistries, and their improved performance characteristics.  
 
Paper No.: 8506  
Paper Title: Development of an Innovative Mixed Chloride Leaching Process for the Recovery of Rare Earths  

 
Speakers’ List 
 
Version: May 1, 2014 
Page 78 of 104 
 
Authors:  
V.I. Lakshmanan, Process Research Ortech Inc.; R. Sridhar, Process Research Ortech Inc.; M.A. Halim, Process Research Ortech 
Inc.;  
Abstract 
Rare earth elements and yttrium (REEs+Y) are being used in the making of hybrid electric cars, catalytic converters, wind 
power generators, LEDs, hard disc drives, flat panel displays and portable electronics. Currently China produces more than 
90% of REEs+Y, which has made REEs+Y a critical strategic resource. Process Research ORTECH Inc. (PRO) has developed the 
innovative mixed chloride (HCl+MgCl2)-solvent extraction processes for recovery of REEs+Y from their ores. The HCl leaching 
system provides the opportunity to regenerate the acid, while the presence of MgCl2 in the lixiviant enhances the activity of 
the hydrogen ion by orders of magnitude, making the lixiviant very aggressive and resulting in high recoveries of REEs+Y. 
Solvent extraction steps are used for separation and purification of REEs+Y from other value metals or impurities including 
iron, zirconium, hafnium, uranium, thorium, niobium, tantalum and titanium. Direct individual separation of REEs+Y in mixed 
chloride system allows avoiding the additional process steps of precipitation and dissolution in HCl. The resulting process has 
a simplified flow sheet that is closed loop and environmentally friendly.  
 
Paper No.: 8510  
Paper Title: The Mineralogy of the Songwe Hill REE Deposit, Malawi, and the Implications for Mineral Processing  
Download 0.86 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling