Speakers’ List Version: May 1, 2014 Page 1

Authors:   Ru an Chi, ; Zhi gao Xu, ; Zhen yue Zhang, ; Zheng yan He, ; Yao yang Ruan, ;   Abstract

Download 0.86 Mb.
Pdf ko'rish
Hajmi0.86 Mb.
1   ...   11   12   13   14   15   16   17   18   19

Ru an Chi, ; Zhi gao Xu, ; Zhen yue Zhang, ; Zheng yan He, ; Yao yang Ruan, ;  
Thorium is one of the main radioactive elements in mineral type rare earth ores and the potential material for substituting 
uranium. Therefore, thorium must be separated effectively in order to obtain lower radioactive products. There are abundant 
resources for thorium in the rare earth ores in China, especially in Baiyunebo mixed ores. As associated element coexisting in 
rare earth ores, thorium is separated from rare earth concentrate, iron concentrate, as well as from waste water and slag so as 
to achieve the secondary recovery of thorium. The methods of separation include ion exchange resin, liquid-liquid extraction 
and liquid-solid extraction. TBP extraction has been mainly applied to separate thorium by domestic and foreign scholars. This 
paper based on comparison of different processes describes separation of thorium from rare earth ores especially Baiyunebo 
mixed ores, single bastnaesite and monazite detailly, and provides suggestion for the separation of thorium resources in 
Paper No.: 8307  
Paper Title: New technology of the Decomposition of Monazite and Bastnaesite  
Bianx Xue, Northeastern University; Wu Wen Yuan, Northeastern University;  
Monazite and Bastneasite are the biggest storage and output of rare earth resource in world. Currently, the sulfuric acid 
decomposition process has been used to decompose the Baotou mixed rare earth concentrate in industry. However, this 
method suffers from some main disadvantages with serious waste pollution, waste of resources, such as F and P and so on. In 

Speakers’ List 
Version: May 1, 2014 
Page 84 of 104 
this paper, the decomposition of Baotou mixed rare earth concentrate by Ca(OH)2-NaOH is proposed, which can ensure the 
high mineral decomposition rate, restrain the discharge of F, decrease the decomposing temperature and recycle the P and F. 
The studies would meet the requirements for the industrial production and have potential industrial application. when the 
temperature is 630?, the quantity of Ca(OH)2 is 23%, the quantity of NaOH is 15% , and 30 min, the decomposition rate of rare 
earth concentrate is 98.11%. The kinetics to the decomposable reaction is that the apparent activation energy decreases when 
the NaOH is added into the mineral, which is benefited to decompose the mineral. There are three sections for the 
decomposable reaction: If the temperature is in the rang of 500-650?, the reaction rate is controlled by chemical reaction 
control mode, the reaction is in the mixing zone when the temperature is in the rang of 455-500?, and the temperature 
between 350? and 455?, the reaction rate is controlled by diffusion control mode. The study is support by National Basic 
Research Program of China (973Program) (2012CBA01205), Key Projects in the National Science & Technology Pillar Program 
during the Eleventh Five-year Plan Period(2012BAE01B02), Project supported by the National Natural Science Foundation of 
China (51104040, 51274060)  
Paper No.: 8315  
Paper Title: Significant Strides Toward REE Production in Canada  
Ian London, Avalon Rare Metals;  
The Canadian Rare Earth Elements Network or ?CREEN? was formally launched at the Rare Earth Symposium at MetSoc?s 
COM13 in late 2013. CREEN is an industry-led, multi-stakeholder network focused on providing collaborative solutions that 
will advance Canada?s REE sector to produce a significant proportion of the global production of separated critical rare earth 
products by 2018. The network is led by companies with REE projects under development and is supported by universities, 
engineering firms, and national and commercial laboratories. CREEN aims to accelerate the development and delivery of 
timely solutions to technical and economic issues specifically facing Canada?s emerging rare earth sector. It will facilitate 
partnerships with other national and international organizations to leverage existing research initiatives. It also supports 
training and education to ensure that the needed qualified human resources are available to achieve the sector?s goals. CREEN 
membership spans the full rare earth supply chain, from prospective producers, advanced project developers, national and 
commercial laboratories, engineering consultants, university researchers, and other innovators. Industry drives the projects to 
ensure they are directly applicable to the challenges in this exciting field. This presentation will speak to CREEN's rapidly 
developing networking and project development initiatives in response to global competition, by strengthening Canada?s 
downstream mining, metallurgical and chemical processing and supply chains (that reach from mining to end user 
applications) to address the demand for emerging energy efficient and clean technologies.  
Paper No.: 8330  
Paper Title: Non-wetting Rare-earth Oxide Ceramics with Applications to Sustained Hydrophobicity  
Kripa Varanasi, Massachusetts Institute of Technology (MIT) ; Gisele Azimi, Massachusetts Institute of Technology (MIT);  
Hydrophobic materials that are robust to harsh environments are needed in a broad range of applications [1?3]. Although 
durable materials such as metals and ceramics, which are generally hydrophilic, can be rendered hydrophobic by polymeric 
modifiers [4], these materials deteriorate in harsh environments. Here we show that a class of ceramics comprising the entire 
lanthanide oxide series, ranging from ceria to lutecia, is intrinsically hydrophobic (Figure 1) [5]. We attribute their 
hydrophobicity to their unique electronic structure, which inhibits hydrogen bonding with interfacial water molecules. We 
also show with surface-energy measurements that polar interactions are minimized at these surfaces and with FTIR/GATR 
(Fourier transform infrared / grazing-angle attenuated total) that interfacial water molecules are oriented in the hydrophobic 
hydration structure. Moreover, we demonstrate that these ceramic materials promote dropwise condensation, repel impinging 
water droplets, and sustain hydrophobicity even after exposure to harsh environments [5]. To demonstrate the robustness of 
the hydrophobicity of rare-earth oxides, we subjected a ceria pellet to a high-temperature environment (1000 °C for 2 h in air) 
as well as abrasive wear and measured water contact angles before and after exposure. For comparison, a fluorosilane-coated 
silicon substrate was also subjected to the same high-temperature conditions. The fluorosilane modifier degraded as expected 

Speakers’ List 
Version: May 1, 2014 
Page 85 of 104 
and the surface became hydrophilic, whereas ceria sustained its hydrophobicity as shown in Fig. 2a,b. We envision that this 
class of robust hydrophobic materials will have far-reaching technological potential in various industrial applications, where 
water repellency and dropwise condensation are desirable.  
Paper No.: 8353  
Alexandre Rocha, Mineracao Serra Verde; Denilson Coutinho, Mineracao Serra Verde; Euler Soares, Mineracao Serra Verde; 
Paulo de Tarso, Mineracao Serra Verde; Andreas Sprecher, Mineracao Serra Verde; John R. Goode, J.R. Goode and Associates;  
The Serra Verde project in Brazil, has an Indicated Resource of 229 Mt at 0.15% total rare earth oxides (TREO) with 27% as 
heavy rare earth oxides (HREO - Eu to Lu+Y) and an Inferred Resource of 574 Mt at 0.12% TREO. The deposit comprises 
loosely consolidated saprolite over granite with rare earths sorbed on the clays. Production plans call for a mining rate of 6 
Mt/a at a grade as high as 0.24% TREO for four years followed by mining at 20 Mt/a at a grade of 0.12% TREO for a total of 20 
years. Corresponding TREO recovery starts at 5,000 t/a rising to 10,000 t/a with HREO comprising up to 40% of the TREO 
content and HREO plus critical Nd and Pr comprising >60%. Extensive testwork shows that an agglomeration and heap leach 
operation will extract the rare earths with leach solution processed by reverse osmosis and selective precipitation to make a 
high-grade rare earth product. This will be remotely processed in the initial years and separated and refined at the mine site 
starting in the fourth year. This paper describes the project, the development work done to date, the forecast economics, and 
the way forward for the world-class Serre Verde deposit.  
Paper No.: 8338  
Kevin Bradley, SGS Canada Inc.; Niels Verbaan, SGS Canada Inc.; Henrie Notzl, ; Dave Marsh, Avalon Rare Metals Inc; John 
Goode, ;  
The mineralogy of the Avalon Nechalacho deposit is complex with significant fractions of HREE, Zr and Nb found in refractory 
minerals such as zircon and fergusonite. Sulphuric acid baking followed by water leaching can be used to extract REE from 
flotation concentrates but acid baking does not completely ?crack? the zircon and fergusonite so the extraction of Zr, Nb, and 
HREE are not high. An alternative flowsheet has been developed that is able to obtain significantly improved extractions of 
HREE, Zr and Nb from flotation concentrates or acid bake residues by cracking the zircon and fergusonite minerals with 
caustic soda at high temperatures followed by water washing to recover excess caustic soda and soluble sodium silicates and 
phosphates. REEs, Zr and Nb in the solid residue can then be solubilized with HCl or H2SO4. This paper highlights some of the 
findings from an extensive laboratory program and discusses several flowsheet implications.  
Stream: Vanadium Symposium Honouring Professor 
Gilles Allard
Paper No.: 8616  
Paper Title: New DRI Technology Development for Oolitic Iron Ores ? Clear Hills Project, Alberta, Canada  
Liam Murphy, GeoI.I.T., Exploration & Development, Ironstone Resources Ltd.;  
The Clear Hills polymetallic oolitic iron and vanadium deposit located in northwestern Alberta, Canada represents a significant 
source of high-grade iron and vanadium metallics for the global marketplace. It is one of the largest compliant iron and 

Speakers’ List 
Version: May 1, 2014 
Page 86 of 104 
vanadium deposits of its kind in the world with over 550 million tonnes indicated with an average iron grade of 33% Fe and 
2.46 billion pounds of vanadium pentoxide contained. Over 300 billion tonnes of oolitic ore is globally ubiquitous with no 
commercial pyrometallurgical process currently available to exploit them. Ironstone Resources, in conjunction with HATCH 
engineering, has developed and tested a pyrometallurgical process to produce metallic iron from low iron, high silica and high 
phosphorous oolitic ores. The Hatch-Ironstone Chloride Segregation (?HICS?) process has been successfully demonstrated and 
is capable of producing commercial-quality Direct Reduced Iron (?DRI?) containing 90% metallic iron with vanadium 
concentrating in the waste stream where it is expected to be conventionally recovered. Hatch and Ironstone plan to complete a 
large continuous pilot plant test on commercial equipment to provide essential engineering information required as input for 
construction of a demonstration plant at minesite. Ironstone is targeting annual production of 2.5 million tonnes of hot 
briquetted iron and approximately 20 million pounds of vanadium pentoxide by 2020. This talk will highlight the 
developmental achievements of the HICS technology and the development plans for the Clear Hills resource.  
Paper No.: 8465  
Paper Title: An Overview of Redox Flow Battery Technology for Energy Storage and Conversion, Challenges and 
Baoguo Wang, Tsinghua University;  
Because of the rapid development of renewable energy worldwide in recent years, including wind farm and solar power 
station, massive electricity energy storage is becoming important. Unlike conventional power supply systems, such as oil, 
natural gas and coal, renewable power, through which electricity is generated by wind, photovoltaic or solar thermal, is 
inherently intermittent and fluctuant. Therefore, massive electricity energy storage becomes an inevitable technology for the 
balance of demand and supply in renewable energy systems, if it takes the role as a main energy source. Vanadium Flow 
Battery (VFB) has been regarded as a promising technology for massive electricity storage to meet the needs in photovoltaic 
and wind power for its designable capacity, long lifetime and high efficiency. However, the lack of a feasible strategy to design 
stack becomes a hurdle for obtaining higher energy efficiency, and there is a strong need for understanding the behaviors 
related to energy conversion and the transfer of active species during charge/discharge cycles. In addition, vanadium 
electrolyte and membrane used for making battery stacks take a great part of manufacture cost. Through our research and 
development efforts, we have significantly reduced the cost of electrolyte and membrane by designing processes and 
developing novel membrane formation mechanisms, thus obtaining an affordable production to meet energy storage market 
Paper No.: 8390  
Paper Title: Recovery of vanadium (IV) from pressure acid leaching solution of stone coal by solvent extraction  
Chang Wei, Kunming University of Science and Technology; Xingbin Li, Kunming University of Science and Technology; 
Minting Li, Kunming University of Science and Technology; Zhigan Deng, Kunming University of Science and Technology;  
The pressure acid leaching is one of effective techniques for extraction vanadium from the vanadium-bearing stone coal, while 
how to separate and recovery vanadium from the pressure acid leaching solution is a crucial processes. This paper reports on 
recovery of vanadium from multi-element sulfuric acid leaching solution of stone coal. The process developed consists 
essentially of reduction of ferric ion, solvent extraction, acidic ammonium salt precipitation and calcination to yield vanadium 
pentoxide. The influence of various operational parameters on the extraction processes has been studied in detail. VO2+ was 
selective extraction by 10%(v/v) D2EHPA and 5%(v/v) TBP in sulfonated kerosene. After 7 stages extraction and 5 stages 
stripping, the extraction of vanadium was 96.5 %, and the stripping of vanadium was 99.5%. Finally 99.3 % purity of V2O5 
was produced by oxidation precipitation of ammonium polyvanadate at pH of 1.8~2.2, and calcination the precipitate at 550? 
for 2h. It is conclude that the solvent extraction and precipitation is an efficient technology for recovery vanadium from the 
multi-elemental pressure acid leaching solution of vanadium-bearing stone coal.  
Paper No.: 8367  

Speakers’ List 
Version: May 1, 2014 
Page 87 of 104 
Paper Title: Crystallization Separation of Na3VO4 and Na2CrO4 in Multi-component System of Sub-molten Salt Method 
for Processing Vanadium slag  
Shaona Wang, Institute of Process Engineering, CAS; Hao Du, Institute of Process Engineering, CAS; Shili Zheng, Institute of 
Process Engineering, CAS; Man Feng, Institute of Process Engineering, CAS; Yi Zhang, Institute of Process Engineering, CAS;  
The solubility data of Na3VO4 and Na2CrO4 in the NaOH-Na3VO4-Na2CrO4-H2O quaternary system at (40 and 80)? were 
measured. Based on the data and the digestion liquor obtained by the sub-molten salt oxidation decomposition reaction, 
separating Na3VO4 by cooling crystallization first followed by evaporative crystallization of Na2CrO4 is preferred. The effect 
of crystallization process parameters was also studied. The results showed that Na3VO4 was optimal separated when the 
NaOH concentration was 300 g/L, stirring speed 160 r/min, temperature from 80 ? to 40 ? with cooling rate 1 ?/min, seed load 
1 %, holding time 90 minutes. Under the optimal conditions, the crystallization rate of Na3VO4 was more than 54 %, and the 
purity of the crystal was above 93 %. Then Na2CrO4 was separated when the NaOH concentration evaporated to 650-700 g/L, 
and the purity was above 90%.  
Paper No.: 8430  
Paper Title: Vanadium Electrolyte Cost and Purity Considerations for Vanadium redox Flow Battery Applications  
Maria Skyllas-Kazacos, University of South Wales;  
When problems associated with the intermittency and variability of grid connected wind and solar farms started to affect grid 
stability in many parts of the world, the need for ?dispatchable? renewable energy became apparent, and storage was finally 
identified as a critical component of the Smart Grid. Amongst the various energy storage technologies currently available, the 
All-Vanadium Redox Flow Battery (VFB) pioneered by the University of New South Wales in Sydney in the mid-1990?s is 
regarded as one of the most attractive in terms of cycle life, energy efficiency and cost. Since 2005, over 50 vanadium redox 
battery research groups have emerged around the world and new advances in low cost membranes and electrode materials 
have enabled the vanadium redox battery to achieve the cost structure needed for large-scale grid-connected applications. 
Several companies are now manufacturing and installing MW-scale VFBs in applications ranging from renewable energy 
storage, load-levelling, emergency back-up power and power arbitrage. The full-scale uptake of the VRB in commercial energy 
storage systems however, is heavily dependent on the availability and cost of vanadium used in the VRB electrolyte. Cost is 
also a function of purity requirements and although there is little scientific evidence on the effect of impurities on the VRB life 
and performance, VRB developers continue to demand high purity vanadium at considerable cost. This paper will provide a 
brief overview of the current understanding of electrolyte impurities on VRB performance together with an economic analysis 
of the impact of vanadium prices on overall VRB capital and levelised costs for a range of applications.  
Paper No.: 8468  
Paper Title: Redox Flow Battery Development for Stationary Energy Storage Applications at Pacific Northwest National 
Vincent Sprenkle, Pacific Northwest National Laboratory;  
The successful integration of renewable energy sources into the energy grid will likely depend on the development of suitable 
electrochemical energy storage (EES) systems. These EES systems must be able to efficiently store electricity during peak 
generation and then release it within the required timeframe during peak demand. The battery systems must be reliable, 
durable, safe, and affordable in order to facilitate widespread deployment of renewable energy in most parts of the country. 
For the past several years, Pacific Northwest National Laboratory (PNNL) has conducted extensive research and development 
efforts in energy storage systems suitable for stationary energy storage and grid support applications under funding from the 
Department of Energy ? Office of Electricity (DOE-OE. This talk will provide an overview of PNNL?s OE funded development 
efforts on redox flow battery technology.  

Speakers’ List 
Version: May 1, 2014 
Page 88 of 104 
Paper No.: 8470  
Paper Title: UniEnergy’s Vanadium Redox Flow Battery Development  
Charles Vartanian, UniEnergy Technologies;  
UniEnergy Technologies (UET) is a direct outgrowth of advanced battery Research & Development at the Pacific Northwest 
National Labs (PNNL). UET has translated the PNNL-developed mixed acid Vanadium electrolyte into a containerized MW 
scale energy storage product capable of an array of grid storage applications. The presentation will provide an overview of the 
characteristics of the underlying new breakthrough in Vanadium redox flow battery chemistry, outline the execution 
underway at UET to productize prior R&D success into a commercial product, and map the performance characteristics of 
UET?s product to specific grid storage applications ranging from renewables integration to wholesale power market services.  
Paper No.: 8471  
Paper Title: State of Global Vanadium Industry in 2014  
Terry Perles, TTP Squared Inc.;  
This paper will review the state of the global vanadium industry in 2014 from a fundamental standpoint and outline the 
implications for the market in the coming years. Global vanadium resources and reserves will be defined. Current production 
of vanadium will be quantified and examined in terms of production by country, sources of raw materials for production and 
cost implications of the production processes. Current consumption of vanadium by country and by application will be 
reviewed. Vanadium supply/demand balance in recent years and resulting impacts on global inventory levels will be 
discussed. Projections for changes in global production, consumption and resulting inventory changes for the vanadium 
market in the coming years will be made. Quality requirements for current and future applications for vanadium will be 
analyzed and compared with the vanadium production base and implications will be discussed.  
Paper No.: 8483  
Paper Title: Flow Battery Technology  
Andy Klassen, Prudent Energy Inc.;  
Flow Battery technology continues to advance and gain traction in the growing Energy Storage Market. Prudent Energy, a 
long-time Vanadium flow battery leader, will present an overview of their MW-Class VRB®-ESS system and selected case 
studies. Installation details, dispatch schemes, and results of the systems operation at several different sites will be presented 
to give participants real-world data.  
Paper No.: 8336  
Paper Title: Mineralogy of the Matagami and Chibougamau Vanadium Deposits, Abitibi, Québec, Canada  
Download 0.86 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19

Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling