Speakers’ List Version: May 1, 2014 Page 1

Authors:   Mehmet F. Taner, Consulting Geologist and Minerologist;   Abstract

Download 0.86 Mb.
Pdf ko'rish
Hajmi0.86 Mb.
1   ...   11   12   13   14   15   16   17   18   19

Mehmet F. Taner, Consulting Geologist and Minerologist;  
Vanadium mineralization occurs in oxide-rich horizons within the layered gabbro zones of the upper parts of the Bell River 
Complex, Matagami, Québec and the Lac Doré Complex, Chibougamau, Québec. The main oxide minerals are ilmenite and 
titanian magnetite, containing 20 to 70% of volume and the ratio of titanian magnetite to ilmenite is relatively constant, 
ranging from about 1:1 to 2:1. Their sizes are less than 5 ?m to greater than 1-2 mm, occurring as coarse- to medium-grained 
subhedral crystals intergrown with cumulate silicate minerals (plagioclase, pyroxene, etc.). The ilmenite grains are 
mineralogically and compositionally homogeneous and have low V contents (average 0.18% equivalent V2O5). In contrast, the 
titanian magnetite grains are inhomogeneous, consisting of trellisworks of ilmenite lamellae in Ti-poor, V-rich magnetite (less 
than 2 wt. % TiO2, and 1.41% equiv. V2O5 (in average). Thus, the magnetite is the principal ore mineral of vanadium; it hosts 
vanadium in the form of V3+, not V5+, as is commonly and erroneously reported.  

Speakers’ List 
Version: May 1, 2014 
Page 89 of 104 
Paper No.: 8329  
Paper Title: Electropinning Process: A Method for the Delivery of Vanadium Based Compounds  
Yaman Boluk, University of Alberta; Cagri Ayranci, University of Alberta; Mahsa Kalantari, University of Alberta;  
Applications of both vanadium oxides and vanadium chloroperoxidases require exposing them to high surface areas for their 
respective uses. Electrospinning process is an opportunity to prepare such matters for catalytic and antimicrobial applications. 
Electrospinning is a production technique which can be used to create nanofibres in nonwoven form from polymer solutions. 
The electrospinning process conditions, use of polymer solutions and incorporation of vanadium compounds and their 
potential applications will be discussed.  
Paper No.: 8335  
Paper Title: Case History of the Dore Lake Vanadium Deposit, Chibougamau, Quebec  
Gilles O. Allard, Department of Geology, University of Georgia;  
The name “Dore Lake vanadium deposit” comes from the host rock, the Dore Lake Complex, an Archean metamorphosed 
layered complex first identified by Allard in 1954, and named from Dore Lake (Lac aux Dorés). The DLC is host to the copper-
gold deposits of the Chibougamau camp. The complex is folded and the vanadium deposit is on the south limb quite distant 
from Dore Lake. The vanadium is in magnetitites located near the top of the complex . Early magnetic surveys brought 
attention to the 30-km extension of the highly magnetic horizon in Rinfret and Lemoine townships. Early drilling results 
showed too high a titanium content for good iron ore. In 1966, Allard mapping in Rinfret township for the Quebec Department 
of Natural Resources discovered the vanadium content of the magnetites. Extensive field work and metallurgical research 
ensued. From the Quebec government the deposit passed to Soquem, put on ice in 1981, and resurrected by McKenzie Bay in 
1996. The latter did extensive field work and chemical research leading to a feasability study by SNC Lavalin. In 2007 Apella 
Resources and Soquem restaked the open ground. Black Rock Metals joined the fray in 2008. The web is now our best source 
of information on the Dore Lake vanadium deposit.  
Paper No.: 8464  
Paper Title: An Overview of Redox Flow Battery Technology for Energy Storage and Conversion, Challenges and 
Adam Tuck, National Research Council of Canada; Suzanne Morrison, National Research Council of Canada; Jiujun Zhang, 
National Research Council of Canada; William Skrivan, National Research Council of Canada; Xinge Zhang, National Research 
Council of Canada; Vladimir Neburchilov, National Research Council of Canada; Zhong Xie, National Research Council of 
Canada; Lei Zhang, National Research Council of Canada; Nancy Glass, National Research Council of Canada;  
Redox flow battery (RFB) technology will be one of the central components in future smart grids and will also play a key role 
in other stationary power applications. Increasing energy/power densities and durability as well as reducing costs are the 
primary objectives of current R&D activities. In this presentation, conventional and emerging RFB technologies for grid-scale 
energy storage are reviewed and evaluated in terms of their characteristics, current technical status, advantages, challenges, 
capital and operational costs, and feasibility in practical applications. In addition, leading RFB companies and R&D 
organizations in Canada and their activities are presented, including NRC?s Energy Storage program, along with 
recommendations for future R&D directions in RFB technology development.  
Paper No.: 8274  
Paper Title: Feasibility study and optimization of dissolution of vanadium from mining residue via biological approach  
Reza Roostaazad, Sharif University; Hassan Gharahbagheri, Memorila University;  

Speakers’ List 
Version: May 1, 2014 
Page 90 of 104 
In this feasibility study, dissolution of vanadium from mining residue, in which vanadium is associated intimately with 
magnetite ore, was investigated via both bacterial ( aerobic and anaerobic) and fungal activity. Although bacterial activities 
was tangible, neither aerobic nor anaerobic experiments were successful in the dissolution of vanadium. Thus, the metabolites 
produced by bacterial activity could not reduce and dissolve vanadium. However, the results in fungal leaching were 
promising, and after 30 days about 36.9% and 29.7% of vanadium was dissolved for a pulp density of 10 and 30 g/l, 
respectively. It means that the complexing agents produced by fungal activity can overcome any kind of dependency between 
vanadium and iron by creating a complex in the solid-liquid interface. At the end, the concentration of metabolites usually 
produced by fungal activity- namely oxalic, citric and gluconic acids- was optimized using the Box- Behnken method and oxalic 
acid was chosen as the main agent for the leaching process.  
Paper No.: 8561  
Paper Title: Geological environment of the vanadium deposit at the Chibougamau area, Quebec, Canada  
Patrick Houle, Ministere des Resources naturelles du Quebec;  
For a long time recognized as a leading producer of copper and gold in Eastern Canada, Chibougamau area (Québec, Canada) 
has one of the largest undeveloped ferro-vanadium resources in the world, within an Archean layered intrusion called ? Dore 
Lake Complex (DLC) ?. The DLC outcrops in two main flanks North and South of Lake Chibougamau. The two flanks are also on 
opposites sides of the Chibougamau anticline, with the synvolcanic Chibougamau Pluton at the hinge point. Located about 25 
km south of the town of Chibougamau, on the DLC southern flank, the mining company Blackrock Metals Inc. is currently 
working to put into operation a deposit of ferro-vanadium (titanium) of several hundred million tonnes by 2016. The magnetic 
layered and border zone of DLC extends over a distance of at least 18 km and is repeated on the northern flank, near the town 
of Chibougamau, where non 43-101 significant historical resources of ferro-vanadium were identified in the past. Following 
the recent drilling done by Blackrock Metals, a new geological model could explain the evolution of the DLC. So, instead of a 
large intrusion that was stratified by gravity, a new geological interpretation indicate rather a multipulse of fresh anorthositic 
flows injected in a huge differentiated sill. Due to its geographical location, its qualified workforce and expertise of its 
entrepreneurs in the development of natural resources, Chibougamau is a center of great strategic value to the mining 
industry of tomorrow. Main entrance to eastern James Bay / Eeyou Istchee region, Chibougamau owes its foundation to the 
richness of its soil. A mining camp at first, the town?s has long depended on the exploitation of natural resources. Today, 
although it is still fed its mining and forestry heritage, the town has integrated the service, energy and tourism industries to its 
economy. Chibougamau is located in the center of a network of transport making roads access and air travel easy. Located less 
than 20 km from a regional airport, the city is increasingly served by a commercial rail line, linking the main cities in the south 
of the Province of Quebec, Canada.  
Paper No.: 8571  
Paper Title: An Overview on the Vanadium Electrolyte for Vanadium Redox Flow Batteries  
Haijian Wang, National Research Council of Canada; Hui Li, National Research Council of Canada;  
The vanadium electrolyte concentration in a vanadium redox flow battery (VRB) affects the power density of the battery 
significantly. Increasing the vanadium electrolyte concentration can considerably increase the power density and leads to a 
more compact design. This is recognized as an effective way to reduce the system cost. There are lots of studies regarding the 
composition of the vanadium electrolyte and different solutions have been proposed in how to increase the vanadium 
concentration and improve the stability. The presentation aims at providing an overview on the studies of vanadium 
electrolyte including its solubility, stability, density and viscosity, and its production through chemical and electrochemical 
Paper No.: 8570  
Paper Title: Vanadium Flow Battery Technology and Vanadium Electrolytes  

Speakers’ List 
Version: May 1, 2014 
Page 91 of 104 
Huamin Zhang, Chinese Academy of Science;  
Renewable energies from sources like solar and wind are among the central topics of our times with the critical issues of 
energy shortage and environment pollution. However, the random and intermittent nature of these renewable sources makes 
it quite challenging for its use and dispatch through the grid. One effective solution is to connect the power station and the grid 
with electrical energy storage devices. Vanadium flow battery (VFB) is rather suitable for large scale energy storage 
application due to its features like long life time, active thermal management as well as the independence of energy and power 
ratings. Dalian Institute of Chemical and Physics (DICP) has devoted to VFB research for more than 10 years from materials to 
system integration, where a spin-off company (Rongke power Co.Ltd) was established in 2008, and the demonstrations of VFB 
in different application field were carried out including the world largest 5MW/10MWh VFB system installed in 2013. In a 
VFB, the medium to storage or release energy is the aqueous vanadium ions solutions with different valence state. In this 
presentation, the R&D status and prospective of VFB and the requirement of electrolytes will be introduced in detail.  
Paper No.: 8546  
Paper Title: Magnetite Grade, Roasting and the Need for a Geometallurgical Approach  
Réjean Girard, IOS Services Géoscientifiques Inc.;  
Extracting vanadium chemical from magnetite bearing ore is a complex multi-step process. Each of these steps, from mining to 
hydrometallurgical refining, has his own sensitivity and cost structure. However, ore at the mine may not be homogeneous 
and optimizing production has usually been accomplished through developing a mining plan allowing blending of the various 
ore sources. Such approach is not necessarily optimal, and an attempt to build a geometallurgical model for Lac Doré deposit 
on behalf of Vanadium Corp is here presented. The Lac Doré deposit, located in northern Québec near Chibougamau, is one of 
the largest known vanadium resources in the world. The deposit is hosted near the interface of the gabbroic and anorthositic 
sequences, under the form of numerous magnetite-bearing layers of oxidic, gabbroic and anorthositic composition. The 
deposit stretches for more than 14 kilometres in length and up to 300 metres in thickness. Vanadium Corp's share of 
resources, formerly calculated for McKenzie Bay Resources, stand at 102 million tons at 35% magnetite and 0.50% V2O5 head 
grade measured and indicated resources, which are currently being re-estimated. Adjacent is BlackRock Metals deposit, with 
published resources of 558 million tons at 24.4% magnetite, vanadium grade not being disclosed. Consequent of its layered 
nature and large extent, the vanadium content of the magnetite and the magnetite abundance are heterogeneous across the 
deposit. Typically, layers at the bottom of the stratigraphy are dominantly thin magnetitite accounting for 5-10% of the rock, 
grading 1.7 to 2.3% V2O5, interbedded with anorthosite. Upward, the vanadium grade of the magnetite drops to 1-1.3% V2O5, 
while the magnetite abundance increase to 30-50%, either as massive beds or disseminated in gabbro. Extracting the various 
facies, with various grades, require careful mining sequence. Vanadium Corp contemplates the possibility to produce high 
purity vanadium chemicals for the battery industry as well as metallurgical grade pentoxide. The process, based on salt 
roasting, will require magnetite beneficiation, soda ash roasting in a rotary kiln, and hydrometallurgical leaching and 
purification. Of this process, the main operating costs are the power requirements for milling and the soda ash consumption, 
which are the main item to be optimized. The ore is, simplistically, a mixture of iron-titanium oxides and silicates, both 
contrasting in their vanadium content, hardness, magnetic susceptibility and density. A resource model will be built 
incorporating density and hardness measurements of each sample in order to optimize the comminution circuit. Based on 
previous experience, integration of proper density variation on the model may improve the resources by up to 15%. Similarly, 
controlling the hardness will enable to optimize the grinding cost and throughput, past the scalping of non-magnetic 
component. These measurements are available from the sample preparation process, or back-calculated from head grade 
analysis. Salt consumption is dependent on both the vanadium grade and the silica content of the magnetite concentrate. 
Resource model will be calculated based on magnetite abundance and vanadium grades of magnetite, rather than simple head 
grade and recoveries. It shall be considered that part of vanadium is partitioned into chlorite and amphibole, not to be process 
by roasting. The importance of this partition is variable and difficult to predict across the deposit. Magnetite abundance is 
available from Davis tube testing and grade by assaying of the magnetite concentrate. Automated SEM (MLA-Qemscan type) 
routine are currently being developed to address the mineral liberation, main source of silica contamination but to be placed 

Speakers’ List 
Version: May 1, 2014 
Page 92 of 104 
in balance with the grinding cost.  
Paper No.: 8556  
Paper Title: Preliminary Investigations of the Fe-Ti-V-P mineralization associated with the Thunderbird and Butler 
gabbroic intrusions within the McFaulds greenstone belt, Superior Province, Northern Ontario, Canada  
Ben Kuzmich, Lakehead University; Pete Hollings, Lakehead University; Michel G. Houlé, Geological Survey of Canada;  
The McFaulds Lake area (i.e., Ring of Fire) located in northern Ontario (Canada) has been the site of recent exploration leading 
to the discovery of several mineralization types including chromite and nickel sulfide deposits. Although the majority of 
exploration has been focused on chromium, the area also contains significant Fe-Ti-V-P mineralization associated with 
gabbroic intrusions, of which the Thunderbird and Butler occurrences are the best defined. The gabbroic intrusions are widely 
distributed throughout the McFaulds Lake area and can be grouped into two main types: (1) large mafic-dominated intrusions 
and (2) subconcordant to slightly discordant mafic-dominated sills/dikes characteristic of the Thunderbird and the Butler 
intrusions respectively. Both intrusions are composed of an evolved mafic suite termed the ?Ferrogabbro? characterized by 
the presence of Fe-Ti oxides. Detailed core logging has shown that both intrusions are largely composed of very similar 
lithologies including iron-rich gabbros, leucogabbros, and anorthosites. Two types of Fe-Ti oxide mineralization occur within 
these intrusions: (1) Fe-Ti-V and (2) Fe-Ti-P mineralization. Fe-Ti-V mineralization has been intersected within both 
intrusions, whereas the Fe-Ti-P mineralization has only been identified within the Thunderbird intrusion. The mineralization 
occurs dominantly as disseminated magnetite and ilmenite (1-10%), but is also present as semi-massive (50-80%), to massive 
layers (>80%). These layers typically contain distinct sharp, stratigraphically lower contacts and gradational upper contacts 
typical of primary igneous layering. The ilmenite occurs as anhedral to subhedral crystals and to a lesser extent, as very fine-
grained exsolutions within anhedral magnetite grains. The ferrogabbroic intrusions may be petrogenetically related to the 
abundant ultramafic rocks within the McFaulds Lake area, and could possibly represent the late stage end member of a 
magmatic sequence as has been suggested for the Bushveld complex. However, the overall absence or rare ultramafic 
components spatially associated with these ferrogabbroic intrusions, combined with some ultramafic units cross-cutting the 
ferrogabbroic units within the Butler intrusion, may suggest that they could represent two distinct magmatic events rather 
than a dismembered layered intrusion as proposed by previous workers.  
Paper No.: 8354  
Paper Title: Studies on the recovery of vanadium from vanadium tailings by alkaline hydrothermal process  
Lanjie Li, IPE, CAS; Shili Zheng, IPE, CAS; Hao Du, IPE, CAS; Shaona Wang, IPE, CAS; Donghui Chen, Chengde Iron and Steel 
Group Co. LTD; Ruiguo Bai, Chengde Iron and Steel Group Co. LTD;  
Vanadium compound in vanadium tailings is above 92wt% alkali-soluble mainly existed in phases hematite and 
pseudobrookite randomly dispersed in acmite. In this study, the alkaline hydrothemal process was employed to decompose 
acmite and dissolve vandium. This process was composed of leaching, purification and crystallization. In the leaching process, 
86% vanadium can be extracted when the vanadium tailinlgs (1:5 g/mL) was stirred at 500 rpm for 3 h at 270 oC with 30 wt% 
NaOH solution. After purification of leaching solution in one stage co-precipitation process, over 78% Si was removed under 
optimum conditions with less than 0.5% loss of vanadium. A novel method of cooling crystallization was applied to separate 
sodium vanadate from the purified solution with 52% crystallization efficiency and 85% overall recovery efficiency. And, the 
crystallization product is presented as Na3VO4?3H2O crystal. The proposed leaching, purification and precipitation steps give 
a feasible recovery of vanadium from vanadium tailings. And, this alkaline hydrothermal process for recovering vandium is 
high-efficiency, environmental friendly as well as energy- efficient.  
Paper No.: 8614  
Paper Title: Diagnostics of Vanadium Flow Batteries  
Hui Li, National Research Council of Canada; Haijiang Wang, National Research Council of Canada; Chaojie Song, National 

Speakers’ List 
Version: May 1, 2014 
Page 93 of 104 
Research Council of Canada;  
Despite the significant advancement in vanadium flow battery technology, there has been a lack of fundamental understanding 
and diagnostic data to optimize the component materials and system design as well as to identify limitations in performance 
and durability in the state-of-the-art technology. This presentation provides an overview of the important diagnostic research 
works in the investigation of performance, durability and failure mechanisms of components (including electrode, electrolyte, 
membrane and bipolar plates) and systems. The currently available diagnostic tools will also be examined.  
Paper No.: 8368  
Paper Title: Development of a new cleaner process for vanadium and chromium extraction from vanadium slag  
Hao Du, IPE, CAS; Shili Zheng, IPE, CAS; Shaona Wang, IPE, CAS; Yi Zhang, IPE, CAS;  
Roasting of vanadium-bearing slag with sodium salts is currently the most popular vanadium extraction process. This 
technology is simple and easy to operate, but suffers from high reaction temperature (850?), low vanadium extraction 
efficiency (80%), low chromium extraction efficiency (10%), and release of toxic gases such as HCl and Cl2, causing serious 
environmental pollutions. The shortage above restrained the development of vanadium production seriously. A new 
hydrometallurgical process with alkali Sub-Molten Salt medium, which was proposed by the Institute of Process Engineering, 
Chinese Academy of Sciences cooperated with Hebei iron &steel group co. Ltd, chengde division, was successfully used to treat 
vanadium slag. Traditional oxidation roasting of vanadium slag with sodium carbonate in a rotary kiln has been replaced with 
a system featuring continuous liquid-phase oxidation of vanadium slag in a sub-molten salt medium at 250 ?, the conversion 
rate of vanadium in vanadium slag has increased from 80% in the traditional process to above 95% in the new cleaner 
process, the conversion rate of chromium in vanadium slag has increased to above 80%. A demonstration plant with 1Kt/a 
scale is preparing to be built in He?bei Province, China. Key words: Vanadium slag, Sub-molten salt, Vanadium, Chromium, 
Cleaner production  
Stream: Multiscale Modelling and Simulations of Failure 
in Structural Materials  
Paper No.: 8547  
Paper Title: Transformation Plasticity in Steel ? Microstructure-based Finite Element Modelling  
Download 0.86 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19

Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling