Speakers’ List Version: May 1, 2014 Page 1

Authors:   Päivi Suikkanen, ; Kaarlo Haavanlammi, ; Kari Hietala, ;   Abstract

Download 0.86 Mb.
Pdf ko'rish
Hajmi0.86 Mb.
1   2   3   4   5   6   7   8   9   ...   19

Päivi Suikkanen, ; Kaarlo Haavanlammi, ; Kari Hietala, ;  
Processing of high-magnesia concentrates, the recoveries of nickel and copper, as well as those of platinum group metals 
(PGM?s) and cobalt are key issues of the Nickel Smelting technologies. PGMs are typically found in association with each other, 
but also importantly with nickel and copper. A challenge of producing saleable concentrates at acceptable recovery degrees, an 
increasing focus on the sustainable use of metals and recent decreases in the value of nickel has increased the interest to find a 
reliable route from Cu-Ni-PGM bulk concentrates to product. According to studies, most efficient process for Ni-Cu-PGM 
concentrates is flash smelting using DON process 20 years ago, in 1995, Outokumpu commenced at Harjavalta a new Nickel 
Flash Smelting technology based on the Direct Outotec Nickel (DON) Smelting Process. The DON process enables production of 
high-grade nickel matte with low Fe-content directly in the Flash Smelting Furnace (FSF) without subsequent converting. 
Metal values from the smelting slag are recovered in the Electric Furnace (EF) as iron containing Ni-matte. Matte refining is 
based on atmospheric pre-leaching and total pressure leaching. Nickel, cobalt and iron are leached leaving a leach residue 
containing small amount of gangue minerals and PGM?s. Iron is removed from the leach solution in an autoclave to produce 
hematite as by-product. Cobalt and nickel will be recovered with standard methods. Overall > 95% metal recovery can be 
expected with low energy consumption and low environmental impact.  

Speakers’ List 
Version: May 1, 2014 
Page 27 of 104 
Paper No.: 8397  
Petri Latostenmaa, Boliden Harjavalta; Juha Järvi, Boliden Harjavalta; Pekka Pyykkö, Boliden Harjavalta; Saku Junnikkala, 
Boliden Harjavalta; Esa Peuraniemi, Boliden Harjavalta; Vesa Törölä, Boliden Harjavalta;  
Nickel smelting started in Harjavalta in 1959. First, flash smelting ? Peirce-Smith converting route was applied, and the high-
grade converter matte was further refined to nickel cathodes. In 1995 the original smelter flow sheet was simplified with the 
novel DON (Direct Outokumpu Nickel) technology. In Harjavalta with the DON technology, high-grade nickel matte with low 
iron content is produced in the flash smelting furnace directly without subsequent converting. The metal values in the 
smelting slag are recovered in an electric furnace as an iron containing Ni-matte. Main special features in Boliden Harjavalta 
nickel smelter are smelting of high-magnesia concentrates, the high recoveries of nickel and copper, as well as those of PGM`s 
and cobalt. Sulfur and dust emissions to air can be seen generally as one main disadvantage of nickel smelting operations. In 
Harjavalta continuous improvements in environmental performance has been rewarded by minimum sulfur and dust 
emissions to the environment and working atmosphere. Today Boliden Harjavalta?s nickel smelter is presenting state-of-art-
technology at nickel smelting. This paper describes the nickel smelter process and includes recent production and emission 
data. It describes features required to achieve environmental and occupational hygiene goals and compares environmental 
performance data to that published on other smelting operations. General description of New Boliden Way is presented and a 
case example of production stability project is also presented.  
Paper No.: 8271  
Paper Title: An Overview on How Mining Projects Are Evaluated and Funded  
Nathan M Stubina, Byron Capital Markets; Alex Watt, Byron Capital Markets; Jon Hykawy, Byron Capital Markets;  
The valuation of mining companies is an inherently risky business. There are many factors that go into evaluating any given 
project, and many of these are out of the control of the developer. For example, miners are ?price takers?, not ?price setters?, 
as they generally have no impact on the price of their final products. Yet, commodity prices are likely the single largest impact 
on a project?s internal rate of return (IRR) and net present value (NPV). Other factors that significantly impact the valuation of 
a project are: capital costs including the level of existing infrastructure (power/water/roads), prospective geopolitical risks, 
likely levels of community support, geology, operating costs including factors such as required metallurgical processing, 
production scale, mine life and management capabilities, just to name a few. This paper reviews how explorers, developers 
and producers are evaluated by financial institutions. The various ways that projects get funding will also be described. Some 
potential pitfalls will be highlighted.  
Paper No.: 8311  
Paper Title: Discrete Event Simulation And Scheduling Algorithms For The Development Of Copper And Nickel 
Converting Operational Modes  
Alessandro Navarra, Universidad Católica del Norte;  
Discrete event simulation provides a computational framework in which the use of smelting equipment can be analyzed and 
optimized, leading to the development of alternative modes of operation. Much of the complexity of copper and nickel smelters 
is centered on the converter aisle. These converters operate in parallel, producing batches, and setting the tempo for the 
downstream operations. In practice, the smelter staff schedules the daily operations, so as to coordinate the smelting furnaces 
and the converters with the downstream operations. Thus, a realistic simulation of smelter operations, over hundreds of days, 
should incorporate converter scheduling algorithms, as presented in this paper.  

Speakers’ List 
Version: May 1, 2014 
Page 28 of 104 
Paper No.: 8557  
Paper Title: Review of Eco-Clean Fangyuan Copper Production Using SKS-BBSTM Oxygen Bottom Blowing Smelting 
(BBS) Technology  
Johnny Zhang, Dongying Fangyuan Non-ferrous Metals Co. Ltd.; Zhi Wang, Dongying Fangyuan Non-ferrous Metals Co. Ltd.; 
Zhixiang Cui, Dongying Fangyuan Non-ferrous Metals Co. Ltd.; Zueyi Guo, Central South University;  
SKSTM copper smelting technology was developed at pilot scale in the 1990s to reduce the emission and energy consumption. 
Up to date, almost 15% of the copper production in China (annual 3 million tonnage) is produced using SKS process. While 
SKS-BBSTM copper smelting technology has been developed and commissioned at Fangyuan Copper Smelter since 2008 to 
produce annually 100,000t of cathode copper. In the past 5 year operation, numerous technique innovations have been 
implemented in the SKS furnace design. The plant has been successfully demonstrated its unique excellent performances on all 
aspects from processing capacity, product quality, energy reduction, cost reduction and emission reduction. The purpose of 
this report is to update all these improvements with proven production data and records. To demonstrate the superior 
performances for the modified SKS-BBSTM technology, the following aspects are discussed and compared with other similar 
advanced technologies: Plant design and operating conditions; Mass and heat balances, metal recovery; Consumables, oxygen 
gun and refractory lining life; Energy consumption and operating costs; Sulfur capture and emission reduction etc. It is 
concluded that the modified SKS-BBSTM process is an eco-clean process which met high international emission limit standard. 
The process is characteristic of other features such as no extra fuel addition, low capital with a very small foot-print design, 
low operating cost, high processing capacity, easy operation, long refractory lining life and high productivity (95%+ on line 
time annually). It offers an alternative cost-effective technology for copper smelting industry.  
Paper No.: 8590  
Paper Title: The Iron Blast Furnace; Theory and Practice ? Thirty-five years later  
Ian Cameron, Hatch;  
In 1979, John Peacey and William (Bill) Davenport published ?The Iron Blast Furnace ? Theory and Practice? billed as ?An up 
to date and comprehensive treatment of blast furnaces from fundamental principles to modern operations?. As a 1979 
graduate of McGill University?s Metallurgical Engineering program, I belonged to the last ?beta? student group which 
completed the prescribed course work and I continued in my career to become a blast furnace consultant. The blast furnace 
remains the dominate process, responsible for 70% of global production. Many improvements have been implemented by 
manipulating the BF process conditions using the principles presented by Peacey and Davenport to reduce coke consumption
increase oxygen usage and productivity. Examples of how the principles presented by Peacey and Davenport were used in 
practice will be presented, especially regarding strategic decision making and process control.  
Paper No.: 8594  
Paper Title: High SO2 Feed Gas Sulphuric Acid Plant Design Option  
Daniel McLaws, MECS Inc.;  
Recent innovations in metal smelting technology utilize continuous oxygen-enriched smelting and converting processes, which 
are capable of producing off-gases containing up to 60% SO2 or more. Other SO2 recovery processes, involving solvent 
absorption and steam or vacuum regeneration, can produce off-gases with SO2 concentrations nearing 100%. Processing of 
these high-concentration SO2 off-gases in conventional sulphuric acid plants can cause excessively high catalyst bed 
temperatures and poor conversion. In order to avoid these problems, a conventional acid plant design must dilute these high 
%SO2 process gasses with dilution air in order to provide the required oxygen to effectively convert the SO2, and provide a 
heat sink (via the inert N2) such that the exothermic reaction, SO2 + O2 -> SO3 , does not exceed the temperature limit of the 
catalyst or the converter vessel. MECS, Inc. has proven that a high SO2 feed gas design can be a viable option which can 
increase energy recovery, reduce energy consumption, and potentially reduce capital costs.  

Speakers’ List 
Version: May 1, 2014 
Page 29 of 104 
Paper No.: 8599  
Paper Title: Copper Production Trends and Developments-A Review of Industry Trends over the past Decade  
A Vahed, WorleyParsons Canada; A. E.M Warner, WorleyParsons Canada; P. J. Mackey, Xstrata Laval Exploration Office   
Abstract In the decade 2002 to 2012, in response to epic global demands, there was some 6.7 million tonnes of new copper 
concentrate capacity brought on line, corresponding to 2 million tonnes of contained copper. This increase in concentrate 
supply necessitated the commissioning of a number of new copper smelters as well as the modernization and/or expansion of 
existing plants to meet the demand. This paper surveys these changes in the copper industry, including an examination of 
smelter technology developments, and a review of selected concentrators. WorleyParsons has supported a number of the 
projects involved in these developments and this role is briefly discussed. The paper introduces a number of ideas related to 
possible future directions of the copper industry.  
Paper No.: 8625  
Maurice Y. Solar, Hatch; William G. Davenport, University of Arizona;  
Most of the recent growth in nickel demand has been for the production of stainless steels and virtually all of it has been 
satisfied by new ferronickel and nickel pig iron projects. But ?good? laterite resources are more and more difficult to find: Ni 
grades are decreasing while Fe contents are increasing and SiO2/MgO ratios vary from 1 to 3 and even higher if limonites are 
included. Predicting the smelting behaviour of such ores requires a more fundamental understanding of the thermodynamics 
of these systems in commercial operations. One valid question is thus whether these furnaces are at thermodynamic 
equilibrium or not. The present paper investigates this question, compares calculated and measured O2 partial pressures and 
mechanical/chemical slag loss ratios and concludes that ferronickel furnaces are not at thermodynamic equilibrium. This 
departure from expectation is actually to the operators? advantage: the targeted ferronickel grades can be obtained at lower 
reduction potentials than calculated from pure thermodynamics.  
Paper No.: 8626  
Maurice Y. Solar, Hatch; S. Mostaghel, Hatch; S. Nicol, Hatch;  
Once upon a time, the process engineer developing the design criteria for a new saprolite ferronickel smelter had it easy: most 
ores were around 2.5% Ni, with a Fe/Ni ratio of 4 to 5 and a SiO2/MgO ratio of about 1.6; to use the French word: garnierites. 
The ferronickel grade selected was the conventional 20 to 25% Ni and the impurity levels could be predicted from well 
established [C], [Cr] and [Si] vs (FeO) graphs. However the process engineer can no longer depend on statistics to design 
smelters: Ni grades are decreasing while the goethite contents are increasing; SiO2/MgO ratios vary from 1 to 3; and Al2O3 
concentrations are reaching levels that cannot be ignored. Mechanistic models must be developed to select or predict essential 
parameters such as kiln and furnace reductions, ferronickel grade, slag losses, metal and slag liquidus, operating temperatures
etc. But these models must be simplified so that they can be used on a routine basis; and they must be calibrated against a 
wide range of commercial operations in order to yield the most realistic predictions possible. The present paper proposes one 
possible approach, using FactSage as a basic source of thermodynamic data. The predictions thus obtained are compared to 
actual performance for two well documented operations, as well as to the predictions made with other tools that might be 
more accessible.  
Paper No.: 8624  
Paper Title: North American contribution to the development of base metal electrometallurgical processes  

Speakers’ List 
Version: May 1, 2014 
Page 30 of 104 
Timothy G. Robinson, Republic Alternative Technologies; Ram Ramachandran, Consultant;  
Electrometallurgical recovery of base metals from sulphate electrolytes has been practised in the USA and Canada since the 
late 1800?s. This paper reports on the importance that North America, in particular British Columbia, Arizona and the New 
York area had on the early process technology developments in copper, lead and zinc and why this happened. Over the past 
century and a half these technical developments have resulted in improved cathode product purity, improved cell house 
productivity and reduction of energy consumption.  
Paper No.: 8623  
Paper Title: Economic Benefits operating a Cu ER Tankhouse at High Current Density Using the METTOP-BRX-
Andreas Filzwieser, METTOP GmbH; Stefan Konetschnik, METTOP GmbH; Iris Filzwieser, METTOP GmbH; Andreas Anzinger, 
Montanwerke Brixlegg AG;  
Increasing tankhouse capacity can generally be done in two ways: Either by increasing the cathodic deposition area (i.e., 
adding more cells or increasing the number of electrodes in the cell) or by increasing the current density. The first possibility 
is quite cost-intensive, as new buildings and infrastructure are required. Increasing the current density is generally a matter of 
the actual electrical system but it is also limited as current efficiency and cathode quality tend to decrease with increasing 
current density. The only way to increase the current density in a way that ensures that the electro-deposition is still pure and 
of a high quality is to minimize the diffusion boundary layer and/or to influence the electro-crystallization by an optimized 
inhibitor distribution. This can be achieved by introducing the fresh electrolyte with the active inhibitors at higher flow rates 
parallel to the electrodes using the METTOP-BRX-Technology. In 2011, the first fully industrial applications started up: At the 
Montanwerke Brixlegg AG, 156 cells are equipped with parallel flow devices and this allowed an increase of current density 
from 345 to 390 A/m². Xiangguang Copper Co., Ltd. operates its second tankhouse with 720 cells at 420 A/m²; this stands for 
an production increase of 50% compared to the same sized ISA tankhouse which is limited to 280 A/m² Even though the 
higher current density is directly proportional to the consumption of electrical energy, the overall operational expenditures 
will be decreased due to the lower costs for bound capital and other savings. The first part of the presented paper gives a cost 
comparison between a conventional copper electrorefining tankhouse and a high current density tankhouse assuming a 400 
000 t/year Greenfield cathode production project. The second part describes the cost savings when installing the METTOP-
BRX-Technology in an existing tankhouse.  
Paper No.: 8648  
Paper Title: Electrical copper slag cleaning: what holds the future?  
Harmen Oterdoom, SMS Siemag;  
In metallurgical copper production, the traditional aim is to increase recovery of copper to the maximum. A new target is to 
make sure end of line products are as safe as possible with respect to health and environment. This means a for example a 
minimization of leachable metals in slag, so it can be safely used as a construction material, and either a concentration or 
fixation of volatile compounds, such as arsenic. Currently, 2 process routes are generally applied: the first milling followed by 
flotation and the second slag cleaning in an electrical furnace. Popularity of both options has fluctuated over the years, and 
currently the milling - flotation seems to be again the more popular one. In this article some of the advantages and 
disadvantages of both methods are described, and especially how long term environmental policies could have an impact on 
the decision which process route to choose. Finally, this article will describe some of the developments in pyrometallurgical 
slag cleaning that could set the direction for the design of the copper plant of the future.  
Paper No.: 8304  
Paper Title: Continuous Converting: The Challenge of Integration  

Speakers’ List 
Version: May 1, 2014 
Page 31 of 104 
Ian Candy, Hatch; Sina Kashani-Nejad, Hatch; Ahmed Hussein, Hatch; Tom Gonzales, Hatch;  
Peirce-Smith converting technology was introduced over 100 years ago and has remained the principal matte converting 
process in use throughout the world, accounting for about 90% of matte converting capacity. Although simple, versatile and 
accommodating, the technology in some geographical regions has been challenged by increasingly strict environmental 
emission limits, notably significantly more stringent ambient SO2 Ground Level Concentration (GLC) standards. To comply 
with impending regulations, some smelters are considering replacing their Peirce-Smith converters with high capacity, 
stationary and fully enclosed continuous converting technology. Since the early 1990s, a number of continuous converting 
technologies have been developed and some are now commercially proven. This paper reviews the challenge of integration of 
these converting technologies into a Brownfield smelting operation.  
Stream: From Concept to Engineering: Metallurgical 
Process and Flowsheet Development  
Paper No.: 8655  
Paper Title: The factors impacting time and cost of flowsheet development  
Matthew Kreuh, SNC Lavalin;  
The mining and metallurgy world is known to be of cyclical nature associated with price volatility. As such, the price cycle has 
some years that are quite lucrative and other years that are require mining companies to tighten their belts. The field is a mix 
of junior, mid-tier, and major mining companies. One thing that is common to all of them is the time required and the cost to 
develop a flowsheet. Factors affecting flowsheet development include maturity of the technology, maturity of the process, 
trade-off studies, geographic location, infrastructure requirements, geotechnical and hydrological studies, where we are in the 
price cycle, etc. The paper also provides typical time frames to complete selected flowsheet development steps.  
Paper No.: 8301  
Paper Title: Design, Construction and Commissioning of Air Separation Units in Remote Locations  
Murray S. Pearson, Hatch; Matthew J. Thayer, Air Products & Chemicals; Jeff B.J. Price, Hatch; David J. McMullen, Hatch;  
In July 2012, Hatch Ltd. and Air Products & Chemicals Inc. completed construction and commissioning of a 4 000 tpd O2 
cryogenic air separation unit (ASU) for Barrick Gold?s Pueblo Viejo Project located in central Dominican Republic. The ASU 
produces high pressure gaseous oxygen, which is used for the oxidation of refractory sulphide ore within the pressure 
oxidation (POX) circuit. As a result of the project?s remote location and tropical climate, many challenges were faced over the 
course of construction, commissioning and start-up of the ASU. These challenges included adequate preservation of equipment 
due to dusty and humid site conditions, final assembly and erection of the cryogenic distillation columns on site, limited spare 
parts inventory/availability, and an unfinished power source for plant commissioning. This paper will discuss the steps taken 
by Hatch and Air Products to successfully design, construct, commission and start up the largest stand-alone ASU plant for a 
POX application in the mining industry.  
Paper No.: 8402  
Paper Title: Development of the Bench Scale IsaMill Signature Plot Test  
Download 0.86 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   19

Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling