Speakers’ List Version: May 1, 2014 Page 1


Authors:   Jiangu He, Laurentian University; Helen Shang, Laurentian University;   Abstract


Download 0.86 Mb.
Pdf ko'rish
bet9/19
Sana15.12.2019
Hajmi0.86 Mb.
1   ...   5   6   7   8   9   10   11   12   ...   19

Authors:  
Jiangu He, Laurentian University; Helen Shang, Laurentian University;  
Abstract 
In nickel and copper production, Sulfur dioxide (SO2) is generated during mineral smelting. Emission of sulfur dioxide into the 
atmosphere causes serious health and environment issues. Sulfuric acid plants convert the harmful SO2 gas to commercially 
useful sulfuric acid product, and therefore have been used to achieve the sulfur reduction in smelters. With tightening 
regulations from the government on emission level of sulfur dioxide, it is essential to take all possible measures to minimize 
the sulfur dioxide emission from smelting plants. In this paper, modeling of a sulfuric acid plant is carried out using 
fundamental principles. The sulfuric acid plant is mainly composed of a SO2 to SO3 converter, a series of heat exchangers and 
SO3 absorption towers. A theoretical model is developed for the SO2 and SO3 converter using mass and energy balances and 
the reaction dynamics. Simulation on the developed converter model shows the variations of important variables, e.g., 
evolvement of conversion under various operating conditions. Industrial data are being analyzed and being used in model 
identification to derive models that fit with industrial system. The developed model is expected to provide a theoretical tool 
for the future optimization and control development.  
 
Paper No.: 8565  
Paper Title: KEYNOTE: Manual Control, Process Automation ? or Operational Performance  
Authors:  
Phil Thwaites, XPS Consulting and Testwork Services;  
Abstract 
difference? The mining industry uses many types of mineral and metallurgical plants to produce saleable product from ore 
mined. Plant design history has left current operations with a mixture of manual operation and various forms of automated 
process controls. Consequently, we typically see high variability in the continuous operations together with a shortfall in the 
attainment of full capacity, or higher utilization of consumables. At a level of best practice, ?Operational Performance 
Excellence? focuses on process control, using automation and control systems to deliver process optimisation. This more 
sophisticated delivery is a great deal more difficult than the first stage of equipment selection / installation. It includes the 
appropriate selection of the right instrumentation, control system, key process knowledge, individuals with a solid control 
engineering background / experience, and the essential backing / support of the operations management team together 
leading to higher value delivery. Robust solutions can be realised, considerably minimising process variation, thus leading to 
process optimisation. This approach results in an easier, efficient and safer process while providing considerable returns for 
the plant owners. How variable are your processes, and do you maintain optimised process performance with dedicated 
resources, modern instrumentation, ?best practice? control systems and performance monitoring tools? In this lecture, these 
questions and their possible answers are discussed.  
 
Paper No.: 8321  
Paper Title: Evaluation of Fibre Optic Temperature Sensors for the Prediction of Tapblock Condition  
Authors:  
Richard D MacRosty, Hatch Ltd; Terry Gerritsen, Hatch Ltd; Ravi Pula, Hatch Ltd; Xin Yuan, Hatch Ltd;  
Abstract 
For several years Hatch has been installing fibre optic temperature sensors on the copper cooling elements of smelting 

 
Speakers’ List 
 
Version: May 1, 2014 
Page 43 of 104 
 
furnaces to improve monitoring capabilities in critical locations. The metal/matte tapblock is a key area to monitor in the 
furnace as it undergoes severe wear from the molten material repeatedly drained through it. The high wear rate around the 
tapblock means downtime is necessary to perform refractory repairs. A good understanding of the condition allows the 
operation to maximize safety and production; consequently the metal/matte tapblocks have been the focus of this study. Fibre 
optic technology allows the installation of numerous sensors in locations that are very sensitive to refractory condition
thereby providing information previously unavailable with traditional measurements. The transient nature of the thermal 
response to the tapping process and 3-dimensional geometry of the tapblock confound the interpretation of the condition. This 
paper focuses on the analysis of both plant data and thermal modeling simulations and details the progress made in relating 
the measurements to the refractory condition around the copper tapblock.  
 
Paper No.: 8575  
Paper Title: Stop metal losses in processes with Sulphide, Cyanide, Ammonia and Pressure Fluctuations.  
Authors:  
Frank W. Crossland, IC Controls; Frank W. Crossland, IC Controls;  
Abstract 
Losses of metal are often traced to incorrect pH/ORP signals in floatation, leaching, extraction, electrolysis, and precipitation 
processes, aggravated by pressure changes. IC Controls a Canadian mining sensor manufacturer developed a new superior 
pH/ORP sensor that stops metal losses, reduces environmental footprint and contributes to sustainability. The cause of 
incorrect pH/ORP signal is rooted in the reference junction. Reference Junctions are designed to allow diffusion of reference 
chloride ions into the process to complete the electric circuit for measurement. Unfortunately, it also allows process ions to 
diffuse into the reference. These ions react with reference electrolyte components causing the signal to change, drifting from 
the desired process value. With fluctuating process pressure, ion in migration also dilutes the electrolyte producing similar 
signal drifts. If process ion diffusion could be stopped, the pH/ORP signal would be accurate. IC Controls new pH/ORP sensor 
stops process ion diffusion, and remains accurate over long periods. Similar to IC Controls proven model 642 Mining pH 
sensor, it is designated model 647. Model 647 contributes to sustainability through reducing disposal costs from waste 
reagents, lost metal, and fewer used sensors. Conclusions: 1. This development will be important to Mines and Hydro-
metallurgists where Sulfide, Cyanide, Ammonia and other poisoning ions are present in the process, as stable pH reading and 
better metal recovery become possible. 2. Model 647 contributes to sustainability through reducing disposal costs from waste 
reagents, lost metal, and fewer used sensors. 3. New processes using higher pressure and fluctuating pressurized reactors will 
greatly benefit from stable pH readings.  
 
Paper No.: 8611  
Paper Title: The Application and Development of the Bottom Blowing Copper Smelting Process  
Authors:  
Ciu Zhixiang, Dongying Fangyuan Nonferrous Metals Co. Ltd.; Shen Dianbang, Dongying Fangyuan Nonferrous Metals Co. Ltd.; 
Wang Zhi, Dongying Fangyuan Nonferrous Metals Co. Ltd.; Li Xiujun, Dongying Fangyuan Nonferrous Metals Co. Ltd.; Bian 
Ruimin, Dongying Fangyuan Nonferrous Metals Co. Ltd.;  
Abstract 
In 1967, the steel industry realized bottom blowing process after the shrouded injector had been invented by Canadian Guy 
Savard and Robert G.H.Lee. While in the nonferrous metallurgical industry, top blowing process was industrial applied in 
Australia in 1987. And side blowing Noranda process went into industrial production in Canada in 1973. Then in 1991 the 
pilot test of bottom blowing copper smelting process was done by using the lances like structure of the Savard-Lee shrouded 
injector in China, the bottom blowing copper smelting process wasn?t put into industrial production until 2008. Because of the 
distinct advantages such as low consumption, safe production and good environmental protection and so on, the bottom 
blowing process is welcome by the copper smelting industry. At the present time, there are 7 companies adopt the new copper 
smelting and have put into production, 4 is establishing with the process. At the same time, the paper discusses the further 
knowledge about the process , likes the distribution of bubble, the distribution of temperature, the composition of gas phase, 
the composition of the matte and the heterogeneity of them and the change of oxidation capacity and so on.  
 
Paper No.: 8309  

 
Speakers’ List 
 
Version: May 1, 2014 
Page 44 of 104 
 
Paper Title: Successful methodology to select advanced control approach  
Authors:  
Michel Ruel; BBA Inc.;  
Abstract 
This paper describes advanced control choices when difficult processes need improvement. How to determine the best 
approach? How to decide between ruled based approaches and model based approaches? How to balance advantages and 
disadvantages, complexity and simplicity, investment and results? How to decide which approach should be preferred? This 
paper will present a decision tree to select the most appropriate approach. Three examples are presented: ? ARC (Advanced 
Regulatory Control) on an AG mill, ? MPC (Model Predictive Control) for combustible management, ? FLC (Fuzzy Logic Control) 
on a SAG mill. A table will compare usage, development, commissioning, maintenance and lifecycle costs for each approach. 
Conclusions and suggestions will summarize the methodology.  
Stream: Nanoscale Materials Characterization  
 
Paper No.: 8635  
Paper Title: 3D strain measurements in Si0.7Ge0.3/Si crystals made possible by the self-interference of split HOLZ 
lines  
Authors:  
Mana Norouzpour, University of Victoria; Rodney A. Herring, University of Victoria;  
Abstract 
We report the measurement of the through-thickness strain of a crystal that in turn enables the determination of the crystal?s 
three dimensional (3D) strain. This new method involves self-interfering a split high-order Laue zone (HOLZ) line produced 
from a strained Si0.7Ge0.3/Si specimen using Diffracted Beam Interferometry (DBI) as shown in Fig. 1 [1, 2]. Up to this time 
only the in-plane 2D strains in crystals have been measureable. Missing for the 3D measurement is the strain through the 
thickness of the specimen, information that is contained in the phase of the electron beam passing through the thickness of the 
crystal. Knowing the 3D strain in crystals is highly desired for crystal growers and device manufacturers since strain creates 
undesirable defects that can destroy the beneficial properties of the crystal but can also be used positively to enhance a 
device?s performance. A split HOLZ line located close to the [320] zone axis was used, Fig. 2a. Experimental details include 
using a JEOL JEM-2010F operated at 200 kV, a probe of ~5 nm, specimen thickness of ~200 nm, energy filtered electrons using 
a GIF Tridiem and the zero loss electrons having a 5 eV window. An electron biprism was electron optically brought into focus 
on the diffraction plane and placed parallel to the split HOLZ line with a positive voltage applied to self-interfere the split HOLZ 
line resulting in the formation of fringes running parallel to the line direction of the split HOLZ line (Fig. 2b). Recovery of the 
split HOLZ line?s phase used Fourier reconstruction by means of Holoworks, a DigitalMicrograph subroutine. Three peaks in 
the phase profile (Fig 2c) were found with a broad peak in the middle and two peaks on either side. Simulations of possible 
phase profiles included the wedge, parabola and bell-shaped models. The bell-shaped one only produced the broad central 
peak, uniquely identifying it as representative of the strain existing through the thickness of this crystal. The fit between the 
experiment and calculated profiles is very good, Fig 3a. The through thickness strain can then be determined with respect to 
the Si0.7Ge0.3 lattice parameter or the Si lattice parameter from the displacement profile shown in Fig 3b. This new method 
can be broadly applied to the many 2D strain measurement methods already established providing them with the through-
thickness strain required for their determination of the 3D crystal strain. Additionally, by using numerous split HOLZ lines, the 
stress-strain tensors used to fully describe crystal strains are also likely to be determinable by the self-interference of split 
HOLZ lines.  
 
Paper No.: 8346  
Paper Title: The Effects of Strain Induced Ordering on Occurrence of Serration in Alloy 600  
Authors:  
SungSoo Kim, Koea Atomic Energy Research Institute; YoungSuk Kim, Koea Atomic Energy Research Institute;  
Abstract 

 
Speakers’ List 
 
Version: May 1, 2014 
Page 45 of 104 
 
Recently, it is known that the ordering reaction occurs in Alloy 600; however, there is little investigation on the effect of strain 
induced ordering on serration at high temperature. The tensile tests were carried out up to 750oC with strain rate 10-2 to 
3.3x10-5/s in Alloy 600. The deformed region of tensile specimen is examined by high resolution neutron diffraction, TEM, 
and DSC (differential scanning calorimeter). Tensile results show a plateau of tensile strength between 200 and 500oC, 
whereas the elongation minimum occurred at about 600oC. The serration appears at 200-500oC region, and disappears at 
above 600oC. The elongation minimum temperature increases slightly with strain rate. It is confirmed that a lattice 
contraction occurs due to a strain induced ordering reaction through neutron diffraction analysis at 200-500oC region. The 
lattice contraction means that the strain induced ordering is occurred. This is confirmed by appearance of exothermic reaction 
in DSC analysis. In addition, TEM examinations show that the planar dislocations are mainly observed in this region. It is 
concluded that the occurrence of serration is due to the strain induced ordering in Alloy 600.  
 
Paper No.: 8355  
Paper Title: Analytical transmission electron microscopy of carbon-rich mineral aggregates in oil sand bitumen  
Authors:  
Martin Couillard, National Research Council Canada; Patrick H.J. Mercier, National Research Council Canada;  
Abstract 
Aberration-corrected scanning transmission electron microscopy (STEM) allows for the nano-scale exploration of materials at 
unprecedented resolution and sensitivity. In this presentation, we combine this approach with electron energy-loss 
spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDX) to analyze the carbon distribution in residual solids 
found in solvent-diluted bitumen product extracted from Alberta oil sands. Major components of these contaminant solids are 
ultrafine clays. Biwettable clays have been associated with the formation of solid-stabilized water-in-oil emulsion, which are 
known to increase the content of both water and mineral solids in the final bitumen product. We demonstrate that the residual 
solids present in bitumen product contain carbon intermixed at the sub-micron scale with clay minerals. By mapping the 
carbon content at the nanometer scale with the high chemical sensitivity of EELS, we provide the first direct observation of a 
patchy coverage of carbon on the surface of the residual clay platelets. This coating of organic matter will contribute to the 
biwettable, hydrophobic character of the platelets, and therefore plays a crucial role in the bitumen extraction process. 
Conclusions based on chemical mapping at multiple length scales will be presented, and their implications on the bitumen 
extraction process will also be discussed.  
 
Paper No.: 8541  
Paper Title: Nanoscale Materials Characterization by X-Ray Microanalysis with High Spatial Resolution  
Authors:  
Hendrix Demers, McGill University; Nicolas Brodusch, McGill University; Raynald Gauvin, McGill University; Patrick Woo, 
McGill University; Raynald Gauvin, McGill University; Patrick Woo, McGill University; Hendrix Demers, McGill University; 
Nicolas Brodusch, McGill University; Raynald Gauvin, McGill University; Patrick Woo, Hitachi High-Technologies Canada Inc.;  
Abstract 
The scanning electron microscope (SEM) was primary developed for imaging applications. With the introduction of the Si(Li) 
energy dispersive spectrometer (EDS), simultaneous imaging and x-ray microanalysis became possible. However, long 
working distance and high current were needed because the position and small solid angle of the EDS detector. The high 
spatial resolution is generally obtained at short working distance with a SEM. Unfortunately x-ray microanalysis is never 
performed in the best imaging conditions. The annular silicon drift detector (SDD) system is inserted below the objective lens 
which gives a higher solid angle (up to 1.2 sr). In consequence, a lower working distance and probe current can be used. An 
improved spatial resolution becomes possible during x-ray microanalysis. With this x-ray detector installed on a HITACHI SU-
8230 cold-field emission scanning electron microscope, quantitative x-ray microanalysis with high spatial resolution at low 
beam energy and low current becomes possible with the possibility of using the various different type of imaging at the same 
time. Also, since the count rate can be as high as 1,500 kcps with our system, which lowers significantly the detection limit of 
elements as well as the minimum feature sizes of different phases that can be distinguished.  
 
Paper No.: 8545  
Paper Title: Field Emission Scanning Electron Microscope High Resolution Imaging of Nanoscale Materials  

 
Speakers’ List 
 
Version: May 1, 2014 
Page 46 of 104 
 
Authors:  
Raynald Gauvin, McGill University; Nicolas Brodusch, McGill University; Hendrix Demers, McGill University; Patrick Woo, 
Hitachi High-Technologies Canada Inc.;  
Abstract 
For developing new technologies, it is important to characterize the microstructure of materials with high spatial resolution at 
the nanoscale. To achieve high resolution, field emission scanning electron microscopes (FE-SEM) were developed. These 
microscopes allow working at low accelerating voltage, below 5 kV, to take advantage of the reduction of the interaction 
volume with accelerating voltage. Furthermore, their higher gun brightness compared to conventional thermo-electronic 
emitters, allow a probe size at the nanoscale. At low accelerating voltage, the emission volume of backscatter (BSE) and SEII 
signals approach that of SEI signals. However it is not enough to reach the highest resolution. A magnetic field above the 
sample improves the spatial resolution by collecting mostly high-resolution signals. In addition, the energy-filtration of the 
electron signals allows selecting the type of contrast detected: topographic, compositional, or crystallographic. The HITACHI 
SU-8230 CFE-SEM provides low accelerating voltage, deceleration mode and energy-filtration of the electron signals and thus 
allows the characterization of the microstructure of materials with high spatial resolution at the nanoscale with various types 
of contrasts. The development of these new technologies permits to extend the imaging capabilities of the SEM towards new 
nanoscale applications.  
 
Paper No.: 8606  
Paper Title: CHARACTERIZATION OF HIGH-ENERGY LITHIUM-ION BATTERY SYSTEMS  
Authors:  
Yang Shi, University of California; Anh Le, University of California; Yu Qiao, University of California; Weiyi Li, University of 
California;  
Abstract 
In order to gain commercial success of electric vehicles (EV), the drive range should be 250-300 miles, demanding an energy 
storage of ~80 kW?h. Meanwhile, it is desirable that the cost is low and the specific weight is high. One promising approach to 
circumvent these conflicting requirements is to design multifunctional battery systems to save cost and weight. As the limits of 
the cost and the total weight are extended substantially, the requirement of drive range may be achieved by using today?s or 
near-future low-cost Li-ion batteries. The cost can be further lowered by optimizing the design and processing procedures. A 
major constraint on such a multifunctional design is the battery robustness. Particularly, thermal runaway of Li-ion batteries 
must be prevented under mechanical abuse, e.g. in a vehicle collision. We are developing a comprehensive set of materials 
processing and characterization techniques to enhance and systematically examine the behaviors of battery components 
under adverse conditions. It is envisioned that the developed techniques will be adaptable to future, higher-energy batteries. 
Once successful, our study will lead to satisfactory battery cost, calendar life, cycle life, power, and operating temperature 
range, enabling commercialization of affordable and safe EVs. It will not only benefit the domestic and global economy, but 
also reduce emissions, enhance energy security, and open doors to new fields such as storage applications.  
 
Paper No.: 8634  
Paper Title: Material Characterizations using the Ultra-stable Scanning Transmission Electron Holography Microscope 
(STEHM)  
Authors:  
Rodney A. Herring, University of Victoria;  
Abstract 
Numerous new types of materials characterization studies are now possible with the Scanning Transmission Electron 
Holography Microscope (STEHM), a Hitachi HF 3300v. The STEHM is an ultra-high resolution (UHR), ultra-stable electron 
microscope producing 35 pm Fourier intensities from its lattice images (Fig. 1) maintaining its atomic resolution images for 
recording times of 120 s, Fig. 2, an unprecedented length of time. The STEHM is the first to have a Cs + coma TEM aberration 
corrector, i.e., an aplanatic TEM, which increases the UHR field of view by 10x, as well as, the first Cs + Cc STEM aberration 
corrector, which produces an ultra-small electron probe and overcomes current limitations of confocal electron microscopy. 
Also required is an ultra-stable laboratory in which it is housed achieved by placing its foundation separate from the 
building?s directly onto bedrock having its center of mass far below the ground enabling it to only feel the vibrations of the 

 
Speakers’ List 
 
Version: May 1, 2014 
Page 47 of 104 
 
Earth. Its temperature stability is + 0.025 oC per hr. The STEHM protects itself against stray magnetic fields by permalloy 
metal shielding within its protective steel box, stray electromagnetic fields by one of its walls consisting of Aluminum, 
barometric fluctuations by maintaining an over-pressurized state and acoustic noise by acoustic wall panels. A service room is 
used to house noisy pumps and heat generating, noisy power supplies. The ultra-high vacuum of 10exp(-13) torr (close to 
deep space) in the electron gun assembly maintains permanent emission stability at ~6x10exp(13) A/m2Sr, the best of any 
microscope, providing confidence in its analytical electron microscopy measurements. Contamination is eliminated using an 
ion pump and ultaviolet cleaner (Hitachi?s Sparkle) at the specimen. The long recording times now possible enable 
researchers to perform very low dose imaging for long times necessary for electron beam sensitive material specimens. The 
STEHM?s four electron biprisms enhance current methods of electron holography and enable new methods such as the self-
interference of split HOLZ lines for three-dimensional strain measurements in crystals [1, 2], self-interference of thermal 
diffuse scattering (TDS) intensity for atomic vibration measurements (amplitude, frequency and energy) necessary for 
molecular dynamic studies [3] and self-interference of amorphous material intensities for determination of their atomic 
structure factors [4, 5]. The STEHM uses dislocated hologram apertures to create electron vortex beams with orbital angular 
momentum that can be used to manipulate the specimen?s electrons, atoms and molecules from the sub-atomic scale to the 
micron scale with possible enhancement of both the image resolution and analytical capabilities [6]. In combination with its 
ExB Wien filter, the STEHM may create electron spin momentum beams useful for spintronic materials research. The STEHM 
has full analytical capabilities and specimen holders that can determine the types of atoms present and their bonding states, as 
well as, an imaging energy filter necessary to measure the coherence of quasiparticles (phonons, plasmons, magnons, etc), 
intraband energy states (excitons, dopants, defects), magnetic fields (domains and their boundaries), electrostatic fields 
(electron bonding densities) by energy-filtered electron holography. And of course, the STEHM uses high resolution cameras 
for collecting data that sometimes requires long exposure times, a capability verified in Fig. 2, for beam sensitive specimen, 
rending the data useful for analysis.  
Download 0.86 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling