Template for lpm-2011 Abstract

Download 141.89 Kb.
Pdf ko'rish
Hajmi141.89 Kb.
Falsafa majmua 2020 Mir (1), 0121, termo oraliq test, Geterogen reaksiyalar tezligi va tezlikni oshirish talablari, 2-vart Word, Cтандартлаштириш асослари, C Izoh qoldirish 4-dars, 4-kurs16au18issiq, Bobojanov Технологик жихозларни таъмирлаш, 1 мавзу “O‘zbеkistonning eng yangi tarixi” o‘quv fanining prеdmеti, ECA Feb2015 Accounting structure, nomsiz, REFERAT-122222222222, Dasturlash. 12-Tajriba ishi, 1 Namunaviy dastur 3 02 Технологик жар модел ва оптимал асос 2018

Simulation of Ionizing Radiation Transport in Radiation 
A.N. Bugay
Joint Institute for Nuclear Research, 141980 Dubna, Russia, Joliot-Curie, 6 
Research on the biological effects of ionising radiation is an actively developing field of 
interdisciplinary research having applications in many fields including radiation protection, 
nuclear medicine, and deep space exploration. In this report a review of the models and 
methods to simulate ionizing radiation transport in biological media is presented.
Most applications rely on the Monte Carlo (MC) ionizing radiation transport codes that 
calculate the absorbed dose in the biological materials. Often this is not sufficient for correct 
prediction or estimation of relevant biological effects, because the response of living matter 
includes very complex effects from the molecular to the organism level at different timescales.
In recent years a hierarchy of biophysical models incorporating physical, chemical, and 
biological events has been actively developed [1]. The key element of this hierarchy is the 
description of initial physical interaction with biological materials at the molecular level. 
However, the transition from macroscopic to microscopic (track-structure) MC simulation 
requires much more detailed physics models than are commonly available. Many specialized 
MC codes like Geant4-DNA, PARTRAC, KURBUC and others have appeared to achieve this 
goal [2]. Historically MC codes simulate interactions in the liquid water as a biological 
phantom because of its abundance in cells (70–80% by weight) and also because of its role as 
a source of reactive free radicals. Measured ionization and excitation cross section data for 
liquid water do not exist, and, therefore, a lot of theoretical models of particle energy-loss 
models was developed. Several studies now attempt to incorporate interaction cross sections 
that are specific to real molecular targets like bulk DNA. Important stage of model hierarchy 
is the simulation of physico-chemical and chemical stages of water radiolysis, and reaction-
diffusion events leading to indirect damage of DNA, lipids and other molecules. Finally, a set 
of biochemical reactions need to be simulated in order to study DNA repair and cell survival 
[3] that can be directly measured in the experiments.
The ultimate goal of described model hierarchy is to study early radiation effects in DNA and 
cells that are not available experimentally, and study on the problem of relative biological 
effectiveness of different types of ionizing radiation which is a matter of importance in 
radiation medicine, in estimation of space radiation risks and in radiation protection. 
[1] H. Nikjoo, R.Taleei, T. Liamsuwan, et al., Perspectives in Radiation Biophysics: From Radiation Track Structure Simulation to Mechanistic 
Models of DNA Damage and Repair, Radiation Physics and Chemistry, vol.128, pp. 3–10, (2016).
[2] I. Kyriakou, D. Sakata, H.N. Tran, et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular 
and DNA Level, Cancers, vol. 14, pp.35-1–26, (2022).
[3] S.J. McMahon, K.M. Prise, A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative 
Biological Effectiveness and Dose-Rate, Frontiers in Oncology, vol. 11, pp. 689112-1–18, (2021). 

Download 141.89 Kb.

Do'stlaringiz bilan baham:

Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2022
ma'muriyatiga murojaat qiling