Texnologiyalari va kommunikatsiyalarini rivojlantirish vazirligi muhammad


Download 19.43 Kb.
bet1/2
Sana21.01.2023
Hajmi19.43 Kb.
#1107261
  1   2
Bog'liq
Xusainov
TINISH BELGILARI, mehribonlik uylari tarbiyalanuvchilarining ijtimoiylashuvida muloqotchanlikka kirishishning psixologik xususiyatlari (1), Документ Microsoft Word (3)(1), Mustaqil ish 1-hozir.org, Курс жумысы кк, 25-сен, 1. Kon mashinalaring konchilik ishlab chikarishidagi tutgan o’rn, мустақил иш, Toshkent axborot texnologiyalari universiteti 310-19 Dasturiy in, 1. Fotoeffekt, uning turlari va konunlari. Eynshteyn Tenglamas, Atom yadrosi tarkibi va asosiy harakteristikasi. Yadroviy kuchla, Elektromagnit tebranishlar, moliya mahmudova sevara, Maulenov 5, Ózbetinshe tálim ushın usınıs etiletuǵın temalar

TEXNOLOGIYALARI VA KOMMUNIKATSIYALARINI RIVOJLANTIRISH VAZIRLIGI MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI.


Mustaqil ish


Mavzu: Suniy neyron tarmoqlarda katta ma'lumotlar va chuqur mashinani o’rganish

Bajardi: 015-18 guruh talabasi
Xusainov M


Tekshirdi:
Naim.Nodira

Toshkent 2022



REJA:

  1. Sunʼiy neyron tarmoqlari 

  2. Suniy neyron tarmoqlarda katta ma'lumotlar va chuqur mashinani o’rganish

Sun'iy neyron tarmog'i - oddiy protsessorlar(sun'iy neyronlar) birlashtirilgan tizimi bo'lib, insonning nerv tizimini imitatsiya qiladi. Bunday struktura evaziga, neyron tarmoqlari dasturlanmaydi, ular o'qitishadi. Huddi haqiqiy neyronlar kabi, protsessorlar signallarni oddiygina qabul qilishadi va boshqa protsessorlarga o'zatishadi. Shu bilan birga, boshqa butun tizim algoritmlar bajara olmaydigan murakkab topshiriqlarni bajaradi.


1943-yilda amerikalik olimlar Uorren Makkalok va Uolter Pittslar sun'iy neyron tarmog'i tushunchasini fanga kiritishgan.

Sunʼiy neyron tarmoqlari (SNT), odatda oddiygina neyron tarmoqlari (NT) deb ataladi, hayvonlar miyasini tashkil etuvchi biologik neyron tarmoqlardan ilhomlangan hisoblash tizimlari.
SNT sunʼiy neyronlar deb ataladigan bogʻlangan birliklar yoki tugunlar toʻplamiga asoslanadi, ular biologik miyadagi neyronlarni erkin modellashtiradi. Sunʼiy neyron signallarni oladi, keyin ularni qayta ishlaydi va unga ulangan neyronlarga signal berishi mumkin. Ulanishdagi „signal“ haqiqiy raqam boʻlib, har bir neyroNTing chiqishi uning kirishlari yigʻindisining chiziqli boʻlmagan funksiyasi bilan hisoblanadi. Ulanishlar deyiladi qirralar. Neyronlar va chekkalar odatda oʻrganish davom etayotganda sozlanadigan vaznga ega. Neyronlar shunday chegaraga ega boʻlishi mumkinki, signal faqat yigʻilgan signal ushbu chegarani kesib oʻtgan taqdirdagina yuboriladi. Odatda, neyronlar qatlamlarga yigʻiladi. Signallar birinchi qatlamdan (kirish qatlami), oxirgi qatlamga (chiqish qatlami), ehtimol, qatlamlarni bir necha marta bosib oʻtgandan keyin oʻtadi.
Trening
Neyron tarmoqlar misollarni qayta ishlash orqali oʻrganadi (yoki oʻqitiladi), ularning har biri maʼlum „kirish“ va „natija“ ni oʻz ichiga oladi va ular oʻrtasida ehtimollik bilan oʻlchangan assotsiatsiyalarni hosil qiladi, ular tarmoqning oʻzida saqlanadigan maʼlumotlar tuzilmasida saqlanadi. Berilgan misol boʻyicha neyron tarmoqni oʻrgatish odatda tarmoqning qayta ishlangan chiqishi (koʻpincha bashorat) va maqsadli chiqishi oʻrtasidagi farqni aniqlash orqali amalga oshiriladi. Keyin tarmoq oʻz vaznli assotsiatsiyalarini oʻrganish qoidasiga koʻra va ushbu xato qiymatidan foydalanib sozlaydi. Ushbu tuzatishlarning etarli sonidan soʻng, mashgʻulot muayyan mezonlar asosida toʻxtatilishi mumkin.
Bunday tizimlar misollarni koʻrib chiqish orqali topshiriqlarni bajarishni „oʻrganadi“, odatda vazifaga xos qoidalar bilan dasturlashtirilmaydi. Masalan, tasvirni aniqlashda ular „mushuk“ yoki „mushuk yoʻq“ deb qoʻlda yorliqlangan misol tasvirlarni tahlil qilish va boshqa tasvirlardagi mushuklarni aniqlash uchun natijalardan foydalanish orqali mushuklar bor tasvirlarni aniqlashni oʻrganishi mumkin.



Download 19.43 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2023
ma'muriyatiga murojaat qiling