Verilerin İşlenmesi


Download 1.48 Mb.
Sana10.01.2019
Hajmi1.48 Mb.


Verilerin İşlenmesi

  • Verilerin İşlenmesi

  • Yapılan bir araştırmada elde edilen veriler dağınık, düzensiz ve karmaşık bir hal içerir. Bu şekliyle veriden anlamlı bir sonuca ulaşmak mümkün değildir. İstatistik analizin hammaddesi niteliğinde olan bu ham verinin işlenerek düzenli ve anlaşılır hale getirilmesi gerekir.

  • Çeşitli kaynaklardan derlenmiş ya da bizim tarafımızdan anket, deney ya da gözlem gibi tekniklerle toplanmış olan ham verilerin anlaşılır ve düzenli hale getirilebilmesi için istatistik seriler, tablolar ve grafiklerden faydalanılır.




Bir değişkenin değerlerinin zamanın şıklarına göre (gün, ay, mevsim, yıl vb.) değişimini gösteren serilere zaman serisi denir. Zaman serisi verileri eşit zaman aralıkları ile derlenmiş verilerden oluşur.

  • Bir değişkenin değerlerinin zamanın şıklarına göre (gün, ay, mevsim, yıl vb.) değişimini gösteren serilere zaman serisi denir. Zaman serisi verileri eşit zaman aralıkları ile derlenmiş verilerden oluşur.



Kalitatif (Niteliksel) verileri basit tasnif ya da bileşik tasnif işlemine tabi tutabiliriz. Basit tasnif işlemi sadece bir değişkenin şıklarına göre yapılan tasniftir. Yanda öğrencilerin mezun oldukları lise değişkeninin şıklarına göre dağılışı basit tasnif işlemine örnek gösterilebilir.

  • Kalitatif (Niteliksel) verileri basit tasnif ya da bileşik tasnif işlemine tabi tutabiliriz. Basit tasnif işlemi sadece bir değişkenin şıklarına göre yapılan tasniftir. Yanda öğrencilerin mezun oldukları lise değişkeninin şıklarına göre dağılışı basit tasnif işlemine örnek gösterilebilir.



Aşağıdaki tabloda öğrencinin mezun olduğu lise değişkeni ile cinsiyet değişkeninin birlikte değişimi bileşik tasnif işlemi ile gösterilmiştir.

  • Aşağıdaki tabloda öğrencinin mezun olduğu lise değişkeni ile cinsiyet değişkeninin birlikte değişimi bileşik tasnif işlemi ile gösterilmiştir.



Niceliksel olarak ifade edilen sayısal olarak ifade edilen ya da ölçülebilir özellik taşıyan değişkenlere ait verilerin istatistik bölünme serileri ile gösterilmesinde basit, tasnif edilmiş ve gruplanmış seriler kullanılır.

  • Niceliksel olarak ifade edilen sayısal olarak ifade edilen ya da ölçülebilir özellik taşıyan değişkenlere ait verilerin istatistik bölünme serileri ile gösterilmesinde basit, tasnif edilmiş ve gruplanmış seriler kullanılır.

  • Basit Seri: Derlenmiş olan sayısal verilerin küçükten büyüğe doğru sıralanması ile elde edilen serilerdir.

  • Tasnif edilmiş seri: Tasnif edilmiş serilerde tekrarlayan elemanlar bir araya getirilerek frekanslar şeklinde ifade edilen seridir.

  • Gruplanmış seri: Belli değer aralıklarına düşen birimler bir araya getirilerek oluşturulan frekanslı serilere gruplanmış seri adı verilir.



Basit seri örnekleri

  • Basit seri örnekleri



Tasnif edilmiş seri örnekleri

  • Tasnif edilmiş seri örnekleri



Gruplanmış seri örnekleri

  • Gruplanmış seri örnekleri



Kesikli karakterdeki niceliksel verileri gruplarken sınıf aralıklarında boşluklar oluşur. Yandaki seride KOBİ’lerde çalışan işçi sayısı değişkeni kesikli bir özelliğe sahiptir. Bu değişken tamsayı dışında değerler almaz. Bu sebeple sınıflar arası boşluklar oluşur.

  • Kesikli karakterdeki niceliksel verileri gruplarken sınıf aralıklarında boşluklar oluşur. Yandaki seride KOBİ’lerde çalışan işçi sayısı değişkeni kesikli bir özelliğe sahiptir. Bu değişken tamsayı dışında değerler almaz. Bu sebeple sınıflar arası boşluklar oluşur.



Basit ve tasnif edilmiş serilerle verinin anlaşılır hale gelmesi mümkün olmuyorsa böyle durumlarda veriyi sınıflara ayırarak gruplanmış seriye dönüştürmek gerekebilir. Veriyi gruplamak için aşağıdaki Sturges sınıf aralığı formülü kullanılabilir.

  • Basit ve tasnif edilmiş serilerle verinin anlaşılır hale gelmesi mümkün olmuyorsa böyle durumlarda veriyi sınıflara ayırarak gruplanmış seriye dönüştürmek gerekebilir. Veriyi gruplamak için aşağıdaki Sturges sınıf aralığı formülü kullanılabilir.

  • S: Sınıf aralığı

  • Xmax: Verinin en büyük değeri

  • Xmin: Verinin en küçük değeri

  • N: Veri sayısı



Xmin: 25 Xmax: 95

  • Xmin: 25 Xmax: 95

  • Serinin sınıf aralıkları 11 birim olacak şekilde gruplanması uygun olacaktır.





Bazı durumlarda değişkenin iki farklı özelliğinin aynı tabloda eşleştirilmiş olarak gösterilmesi istenebilir. Böyle durumlarda çapraz tablo kullanılır. Tabloda satıra istatistik birimlerin bir özelliği, sütuna diğer özelliği yazılarak ortak eleman sayıları hücrelere yazılmak suretiyle çapraz tablolar oluşturulur. Çapraz tablolar hem niteliksel, hem de niceliksel veriler için oluşturulabilir. Aşağıda MYO öğrencilerinin mezun oldukları lise türü ve öğrenim gördükleri bölümlere göre dağılışı verilmiştir. Bu tablo niteliksel veriler için düzenlenmiş bir tablodur.

  • Bazı durumlarda değişkenin iki farklı özelliğinin aynı tabloda eşleştirilmiş olarak gösterilmesi istenebilir. Böyle durumlarda çapraz tablo kullanılır. Tabloda satıra istatistik birimlerin bir özelliği, sütuna diğer özelliği yazılarak ortak eleman sayıları hücrelere yazılmak suretiyle çapraz tablolar oluşturulur. Çapraz tablolar hem niteliksel, hem de niceliksel veriler için oluşturulabilir. Aşağıda MYO öğrencilerinin mezun oldukları lise türü ve öğrenim gördükleri bölümlere göre dağılışı verilmiştir. Bu tablo niteliksel veriler için düzenlenmiş bir tablodur.









Sınıf aralıkları eşit olmadığı durumda da histogram grafiği yine önceki örnekte olduğu gibi çizilir, yani histogram sütunlarının alanını frekansa eşit yapacak şekilde frekansların yeniden hesaplanması gerekir. Yanda öğrenci notları serisi farklı sınıf aralıkları ile verilmiştir

  • Sınıf aralıkları eşit olmadığı durumda da histogram grafiği yine önceki örnekte olduğu gibi çizilir, yani histogram sütunlarının alanını frekansa eşit yapacak şekilde frekansların yeniden hesaplanması gerekir. Yanda öğrenci notları serisi farklı sınıf aralıkları ile verilmiştir







Özellikle niteliksel (sayısal olmayan) değişken değerlerinin grafikle gösterilmesinde kullanılırlar. Dairenin frekanslara açısal olarak paylaştırılması ile elde edilir. Bir birimin açısal karşılığı şöyle bulunur.

  • Özellikle niteliksel (sayısal olmayan) değişken değerlerinin grafikle gösterilmesinde kullanılırlar. Dairenin frekanslara açısal olarak paylaştırılması ile elde edilir. Bir birimin açısal karşılığı şöyle bulunur.

  • Açısal değer

  • Her kategorinin frekansı bu 3 ile çarpılarak dairedeki açısal değeri bulunur.





Zamana bağlı olarak sabit aralıklarla toplanmış olan verilerin eğilimini ve değişimini izleyebilmek için çizgi grafiklerinden faydalanılır. Grafikte yatay eksen zamanı, dikey eksen ise zaman serisi değerlerini göstermektedir. Zaman serileri artan, azalan, durağan ya da periyodik değişen veya bu özelliklerin bir kısmını içeren verilerden oluşur. Nüfus, gelir, enerji tüketimi, konut sayısı vs. artan zaman serilerine örnek gösterilebilir. Modası geçen, teknolojisi eskiyen ürünlerin satışı azalan zaman serisi niteliğindedir. Konutlarda tüketilen doğalgaz miktarı, meşrubat tüketimi vb. hem eğilimli hem de periyodik değişim gösteren bir özelliğe sahiptir.

  • Zamana bağlı olarak sabit aralıklarla toplanmış olan verilerin eğilimini ve değişimini izleyebilmek için çizgi grafiklerinden faydalanılır. Grafikte yatay eksen zamanı, dikey eksen ise zaman serisi değerlerini göstermektedir. Zaman serileri artan, azalan, durağan ya da periyodik değişen veya bu özelliklerin bir kısmını içeren verilerden oluşur. Nüfus, gelir, enerji tüketimi, konut sayısı vs. artan zaman serilerine örnek gösterilebilir. Modası geçen, teknolojisi eskiyen ürünlerin satışı azalan zaman serisi niteliğindedir. Konutlarda tüketilen doğalgaz miktarı, meşrubat tüketimi vb. hem eğilimli hem de periyodik değişim gösteren bir özelliğe sahiptir.





Aralarında ilişki olduğu düşünülen iki değişkenin birbirine göre nasıl bir değişim gösterdiğini, nasıl bir ilişki içinde olduğunu gösteren grafiklerdir. Genellikle bu değişkenlerden bir etkileyen (bağımsız, açıklayan), diğeri etkilenen (bağımlı, açıklanan) değişken olarak ortaya çıkar. Bir malın fiyatı ile onun talebi arasında ters bir ilişki olduğu düşünülür. Kişilerin gelirleri ile tüketim harcamaları arasında pozitif bir ilişkinin olduğu kabul edilir. Aşağıda öğrencilerin matematik notları ile istatistik notları arasındaki ilişki dağılım grafiği ile gösterilmiştir.

  • Aralarında ilişki olduğu düşünülen iki değişkenin birbirine göre nasıl bir değişim gösterdiğini, nasıl bir ilişki içinde olduğunu gösteren grafiklerdir. Genellikle bu değişkenlerden bir etkileyen (bağımsız, açıklayan), diğeri etkilenen (bağımlı, açıklanan) değişken olarak ortaya çıkar. Bir malın fiyatı ile onun talebi arasında ters bir ilişki olduğu düşünülür. Kişilerin gelirleri ile tüketim harcamaları arasında pozitif bir ilişkinin olduğu kabul edilir. Aşağıda öğrencilerin matematik notları ile istatistik notları arasındaki ilişki dağılım grafiği ile gösterilmiştir.







Analitik Ortalamalar



Bir veri setinin merkez noktasını gösteren, serinin normal değerinin bir göstergesi olan ve veriyi tek bir değerle ifade eden değerlere merkezi eğilim ölçüleri adı verilir. Bir verinin ortalaması onun en küçük ve en büyük değeri arasında yer alır.

  • Bir veri setinin merkez noktasını gösteren, serinin normal değerinin bir göstergesi olan ve veriyi tek bir değerle ifade eden değerlere merkezi eğilim ölçüleri adı verilir. Bir verinin ortalaması onun en küçük ve en büyük değeri arasında yer alır.

  • Ortalamaların Faydaları: Ortalamaların faydaları kısaca şöyle özetlenebilir.

  • Ortalamalar çoğu zaman serinin normal değerini gösterir. Tabi bunun için serinin dağılımının da aşırı çarpık olmaması gerekir.

  • İstatistik analiz işleminin temel elemanlarından biridir.

  • Aynı birimle ölçmek kaydıyla farklı serileri karşılaştırmaya imkan tanır.

  • Tek bir sayı olması sebebiyle hatırda tutulması kolaydır.





Aritmetik ortalama serideki gözlem değerleri toplamının toplam gözlem sayısına oranıdır.

  • Aritmetik ortalama serideki gözlem değerleri toplamının toplam gözlem sayısına oranıdır.

  • Basit seride

  • Tasnif edilmiş seride

  • Gruplanmış seride

  • Xi : i. gözlem değeri fi : i. değerin frekansı

  • mi : i. sınıfın orta noktası N : toplam gözlem sayısı



Örnek: Adapazarı'nda nisan ayı ortalama yağışlarını tahmin etmek için geçmiş nisan ayı yağış rakamlarından rasgele 7 tanesi seçilmiş ve aşağıdaki sonuçlar elde edilmiştir. Bu verilerden hareketle Adapazarı'nda nisan ayı yağışlarının aritmetik ortalamasını hesaplayınız.

  • Örnek: Adapazarı'nda nisan ayı ortalama yağışlarını tahmin etmek için geçmiş nisan ayı yağış rakamlarından rasgele 7 tanesi seçilmiş ve aşağıdaki sonuçlar elde edilmiştir. Bu verilerden hareketle Adapazarı'nda nisan ayı yağışlarının aritmetik ortalamasını hesaplayınız.







Bir serideki gözlem değerlerlerinin önem dereceleri farklı olursa, bu tür serilerin aritmetik ortalaması tartılı olarak hesaplanır. Bunun için önem derecesini gösteren katsayılar (tartılar) kullanılır. Örnek olarak öğrencilerin ortalama notlarını hesaplarken derslerin kredileri tartı olarak düşünülürken, ücretlerin belirlenmesinde kıdem tartı olarak kabul edilebilir.

  • Bir serideki gözlem değerlerlerinin önem dereceleri farklı olursa, bu tür serilerin aritmetik ortalaması tartılı olarak hesaplanır. Bunun için önem derecesini gösteren katsayılar (tartılar) kullanılır. Örnek olarak öğrencilerin ortalama notlarını hesaplarken derslerin kredileri tartı olarak düşünülürken, ücretlerin belirlenmesinde kıdem tartı olarak kabul edilebilir.

  • Basit seride

  • Tasnif edilmiş seride

  • Gruplanmış seride







- Veriler arasında önem farkı bulunması halinde kullanılır.

  • - Veriler arasında önem farkı bulunması halinde kullanılır.

  • - Oranların ve ortalamaların ortalaması hesaplanırken kullanılır.

  • - Ortalama maliyet ve satış fiyatı, bileşik fiyat ve miktar indekslerinin hesaplanmasında da tartılı ortalama kullanılır.

  • Örnek Bir işletmede bulunan üç tezgahın belli bir günde ürettikleri malların sayısı ve üretimlerindeki kusurlu oranları aşağıdaki tabloda verilmiştir. Buna göre bu tezgahların ürettiği mamul kütlesinin kusurlu oranını bulunuz.



1 - Aritmetik ortalama hassas bir ortalama olup serideki aşırı değerlerden etkilenir ve aşırı değere doğru kayma gösterir.

  • 1 - Aritmetik ortalama hassas bir ortalama olup serideki aşırı değerlerden etkilenir ve aşırı değere doğru kayma gösterir.

  • 2 - Serinin gözlem sayısı ile aritmetik ortalaması çarpılırsa serinin toplam değeri elde edilir.

  • 3- Serideki gözlem değerlerinin aritmetik ortalamadan sapmaları toplamı sıfır olur.

  • 4- Serideki değerlerin aritmetik ortalamadan sapmalarının kareleri toplamı minimum olur.

  • 5- Aritmetik ortalama özellikle normal dağılıma yakın serilerin ortalaması için elverişlidir.

  • 6- Bir serinin değerleri, diğer iki serinin değerleri toplamından oluşuyorsa bu serinin aritmetik ortalaması da diğer iki serinin aritmetik ortalamaları toplamına eşit olur. X =Y +Z




Download 1.48 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling