vol4.pdf [Ivanovskiy Boris Andreyevich]


Download 4.92 Mb.
Pdf ko'rish
bet47/52
Sana17.11.2017
Hajmi4.92 Mb.
1   ...   44   45   46   47   48   49   50   51   52

The Moon and Mars

In 1986, Congress and the U.S. President created a national commission 

on developing the future space program for the next 50 years.

11

 The main 



recommendation of this commission was a challenge to create a permanent 

(inhabited) base on the Moon in the first decade of the 21st century.

The first decade of the 21st century has come to a close, and the Americans 

did not begin constructing a lunar base. In my personal opinion, if the United 

States intends to build a base on its own—and it is capable of doing so—a 

realistic start date would be 2020. The creation of a permanent active lunar 

base with a staff of 8 to 12 persons will require another 10 to 15 years.

In the last century, Russia projected the construction of a base that was 

jokingly named “Barmingrad” after the chief designer.

12

 Construction on the 



Moon does not require any sort of new scientific discoveries. Present-day tech-

nology is fully capable of supporting colonization of the Moon. But there are 

sociopolitical, economic, and international problems that any country wishing 

to have its own base on the Moon will encounter.

In light of this, one may predict that Russia is not capable of indepen-

dently creating its own base in the next 20 years. Construction of a lunar 

 11.  The text of the report was published as Pioneering the Space Frontier: The Report of the 

National Commission on Space (Toronto: Bantam Books, 1986).

 12.  This is a reference to Vladimir Pavlovich Barmin (1909–1993).

620


Afterword

base is possible, if it is a national, multiyear program on a scale exceeding the 

transformation of the Sochi region into a Winter Olympics base and resort 

comparable to the Cote d’Azur. It is likely that China will create its base five 

years before Russia does. The fourth colonizer of the Moon will be India. It is 

unlikely, but theoretically possible, that Russia and Europe will combine their 

technical and economic resources to build an international lunar base. One 

example of united technological and economic resources is the ISS.

Unlike the ISS, lunar bases can have three purposes: scientific, industrial/

technological, and military/strategic. Creation of a single lunar base for Earth 

will be possible only if the world overcomes its divisions into military-political 

groups. Taking into account the possibilities for strategic use of the Moon, 

one cannot rule out the possibility that NATO countries will combine their 

resources. Combining the leading countries of Europe with the lunar programs 

of the United States could reduce the timeframe by three to five years.

The Moon is planet Earth’s domain. The Moon is a planetary body on 

which people could live, using local lunar resources. It is fully accessible for 

humankind and will not require any new scientific discoveries.

For 3 or 4 billion years, the Moon was tied to Earth by the laws of celestial 

mechanics. In the 20th century, 12 men landed on the Moon. In the 21st cen-

tury, for the first time, the Moon and Earth will be tied together by a reliable 

transport system for delivering technical cargo and the constant bidirectional 

traffic of a human transport system.

In the first half of the 21st century, NATO will be preserved and 

new military-political factions may arise. From the standpoint of “space 

supremacy” for each such faction, in the event of “Star Wars,” the prospect 

of building a base on the visible side of the Moon that has powerful ray and 

ultra-broadband weapons is enticing. Future optical-electronic and radar 

systems will make it possible to conduct continuous monitoring of everything 

taking place on dry land, in the ocean, in the air, and in near-Earth space. 

In the event of military conflicts, lunar bases can carry out local strikes pre-

empting the use of nuclear weapons. The economic crisis of 2008 to 2010 

showed that modern states are capable of negotiating in good faith and even 

combining their economic efforts. Perhaps in 5 to 10 years, they will join 

forces in order to colonize the Moon.

For the world’s astronomers and astrophysicists, the creation of observa-

tories on the dark side of the Moon is quite alluring. The Moon will serve as 

a screen, protecting the observatory’s equipment from noise that reduces the 

resolution capability of modern land-based observatories. Radio observatories 

on the dark side of the Moon will be equipped with extra-large parabolic anten-

nas and phased arrays. For fans of the search for signals from extraterrestrial 

civilizations, research will be transferred to the Moon.

621


Rockets and People: The Moon Race

From the author’s archives.



Boris Chertok with his sons Mikhail (left) and Valentin on his 95th birthday on 

1 March 2007.

Today’s mass media, and sometimes even well-known scientists and 

politicians, make announcements about human expeditions to Mars that will 

take place in the next few decades. Mars fanatics and ambitious government 

bureaucrats tout human flights to Mars as being basically the main prospect 

for space exploration in the 21st century. One has to admit that, from a 

technical standpoint, human flights to Mars could, in fact, be implemented 

in the 21st century. However, it is very difficult to prove that it is necessary 

to include human flights to Mars in future programs for the 21st century. 

Indeed, why invest a minimum of 300 to 500 billion dollars, paying for the 

labor of hundreds of thousands of workers, engineers, and scientists, if all the 

questions that interest Earthlings can be answered by the Martian robots that 

are controlled by scientists on Earth? The automatic spacecraft orbiting Mars 

and the Mars rovers that traverse the surface have convincingly shown that 

there is no life on the surface of Mars. By the end of the 21st century, at least 

8 to 10 more Mars rovers will land on the planet. They will conduct detailed

unhurried research on the atmosphere, the climate dynamics, and the planet’s 

soil. New information will be obtained without enormous risk to the lives of 

expedition crewmembers. Cosmonauts on a Martian expedition would have 

to spend almost a year in weightlessness on the way there. Immediately after 

landing on Mars, they would prepare for the return flight, which would be 

622


Afterword

riskier. (Unlike for orbital stations, Earth cannot provide assistance.) It is my 

firm conviction that human flights to Mars in the 21st century are technically 

possible, but unnecessary. The ambitious goal does not justify the enormous 

expense and risk.

Revolutionary Discoveries and Technologies

New breakthrough space programs, in terms of the timeframe for their 

implementation, their scope, and their contribution to “common human 

values,” will largely be determined by the breakthrough discoveries in other 

areas of science and technology.

For the second half of the 21st century, we can—with some degree of 

certainty—expect discoveries that make it possible to produce controlled 

thermonuclear reactions, new materials, and previously unimaginable technical 

devices. Energy sources based on thermonuclear reactors of various capacities 

will allow all types of transportation to be made completely electrical.

The demand for hydrocarbon fuels (oil and gas) will drop a hundredfold. 

Accordingly, the era of development and production of a wide variety of reli-

able, cheap, and available thermonuclear power sources will dawn.

Alchemists of the Middle Ages tried to obtain gold by mixing mer-

cury with copper shavings. Physical chemists of the 21st century will create 

materials that have the proper-

ties of superconductors at high 

temperatures. This will be the 

greatest revolution in electrical 

engineering. At the same time, 

new magnetic materials will be 

created. Electrical catapults will 

replace solid-propellant and 

liquid-propellant rocket engines 

for launches from Earth or the 

Moon. High-thrust electrical 

rocket engines using thermonu-

clear energy sources will replace 

chemical engines for many space 

exploration tasks.

Revolutionary achievements 

in creating the structure of pho-

toconverters of solar energy into 

electrical energy will increase their 

efficiency from 10 percent to 50 

to 60 percent. This will make it 

From the author’s archives.

Boris Chertok with his granddaughter Dasha.

623


Rockets and People: The Moon Race

possible, if there are difficulties using thermonuclear energy, to create high-

capacity ground-based solar power stations. The electrical output per unit area 

of a solar array on a spacecraft will increase by three to five times.

In the late 20th and early 21st centuries, a technological and information 

revolution took place. Even in the middle of the 20th century, most scientists 

did not believe that any person could place in his pocket a device that could 

store all the information of the Russian State Library and the libraries of 

the British Museum and the U.S. Congress. Today’s electronic devices allow 

anyone, without leaving home, to read and even copy the contents of books 

of the main libraries of the world. At the beginning of the 20th century, this 

would have been pure fantasy.

The information revolution of the late 20th century has, in some way or 

other, touched each inhabitant of Earth. Even the science fiction writers of 

the early 20th century did not predict its scale.

From the author’s archives.



Will he fly to Mars? Boris Chertok and his 

wife Yekaterina Golubkina in 1998 with their 

great-grandson Mikhail Borisovich.

624


Index

Note: A page number in italics indicates a page with an image of the named person, object, or place.

1M, see Mars spacecraft

3KV (Voskhod spacecraft), 10 

3MV, see Mars spacecraft and Venera 

spacecraft

7K (basic Soyuz spacecraft), 10-11, 12, 13, 

80, 108, 136, 269, 282, 303, 537; see 

also Soyuz spacecraft/program

7K-9K-11K circumlunar program, 10-11, 

12

7K-L1 (circumlunar spacecraft, also known 



as L1), 13-14, 23, 140, 154, 155, 156, 

168, 169, 171, 175, 176, 181182, 183, 

185, 190, 211, 221, 228, 229, 233, 238, 

239, 256-263, 267, 546-547; see also 

Zond circumlunar program/spacecraft

7K-L1S (circumlunar spacecraft), 199-200

7K-OK (original Soyuz), 11, 140, 154, 156-

157, 189, 211, 257, 259, 262, 265, 266, 

273, 397, 410, 467, 468, 472, 473; see 

also Soyuz spacecraft/program

7K-S (advanced Soyuz), 19, 257, 261, 273, 

288, 347, 382, 407, 408, 410, 506, 537, 

540, 551, 554

7K-ST (advanced Soyuz), 506-507

7K-T (Soyuz ferry for DOS), 11, 261, 273, 

288, 290, 295, 299, 302, 307, 313, 314, 

379, 382, 397, 502, 506, 551; see also 

11F615A8


7K-TA (Soyuz ferry for Almaz), 407; see also 

11F615A9


7K-TM, 407-408, 410

7K-VI military Soyuz, 19, 273

8A61 missile, 15; see also R-11M

8K63 missile, 25; see also R-12

8K67 ICBM, 25; see also R-36

8K68 launch vehicle, 86; see also R-56

8K75, 9; see also R-9 ICBM

8K78 launch vehicle, 9, 64, 82; see also 

Molniya launch vehicle

8K82 launch vehicle, 86; see Proton launch 

vehicle

8K82K launch vehicle, 299; see also Proton 



launch vehicle

8K84 ICBM, 19; see also UR-100

8K95, 9; see also RT-1 solid propellant 

missile


8K98, 9, 550; see also RT-2 ICBM

8K98P, 9, 410; see also RT-2P ICBM

8K713 global missile, 9; see also GR-1

9K, see 7K-9K-11K circumlunar program

11A52, 86; see also N-1 heavy-lift launch 

vehicle


11A511 launch vehicle, 80; see also Soyuz 

launch vehicle family

11A511L launch vehicle, 27, 270

11A511U launch vehicle, 299; see also 

Soyuz-U launch vehicle

11D51 rocket engine, 527; see also NK-15

11D52 rocket engine, 527; see also NK-15V

11D53 rocket engine, 527; see also NK-19

11D58 rocket engine (for Block D), 422; see 

also Block D

11D111 rocket engine, 527

11D112 rocket engine, 527

11D113 rocket engine, 527

11F67, 494; see also Molniya-1 spacecraft

11F91, 568; see also L1 circumlunar 

spacecraft/program

11F93, 269; see also LOK

11F94, 269; see also LK

11F615A8 (Soyuz ferry vehicle for DOS), 

11, 295, 515; see also 7K-T Soyuz 

spacecraft

11F615A9 (Soyuz ferry vehicle for Almaz), 

11; see also 7K-TA Soyuz spacecraft

11F615A12 (ASTP Soyuz spacecraft), 515

11F615A15 (Progress spacecraft), 515

11F732, 506, 540; see also 7K-S

11K (tanker), 11, 12; see also 7K-9K-11K 

circumlunar program

tion, 11, 3

 Block D


11N6110 ground sta

11, 453


11S854, 422; see also

625


Rockets and People: Moon Race

15A14, 26; see also R-36M ICBM

15A15, 26; see also MR UR-100 ICBM

15A20, 20; see also UR-100K ICBM

15Zh45, 32; see also Pioner missile

17K station, 295, 296, 299, 303, 307, 321, 

515; see also DOS

45K star tracker, 478-479

99K solar sensor, 13

100K star sensor, 13



A

A-4 German ballistic missile (V-2), 51; see 

also V-2

Abramov, Anatoliy P., 195, 220, 291

303, 311, 436, 439, 470, 534, 571

Academician Korolev Street, xli, 85, 142, 

293, 528, 596

Academician Sergey Korolev (tracking ship), 

36, 380 


Academy of Navigation and Motion 

Control, 451

Academy of Sciences (Soviet/Russian), xviii, 

xxiii, 18, 19, 25, 29, 31, 33, 37, 70-71, 

72, 77, 92, 113-114, 125-126, 135, 150, 

162, 176, 180, 213, 217, 223-224, 226-

227, 232, 245, 252, 269, 318, 365, 418, 

430, 456, 552, 557, 597, 601, 608, 609

Academy of Sciences Presidium, 177, 377

Aelita (novel and film), 226

Afanasyev, Sergey A., 92, 135, 136, 138, 

154, 177, 180, 186, 190-194, 198, 203, 

205, 213, 217, 218, 220, 222, 224-226, 

229, 232-233, 236, 248-250, 253, 257-

258, 263, 265-266, 269-270, 271-274, 

283, 309, 314, 323, 334, 340, 359-360, 

364, 365-366, 369, 370, 374, 392, 

397, 416-417, 420, 424, 427-429, 431, 

433-436, 439, 447, 453, 472-474, 478, 

499-500, 504, 526, 529, 531-533, 540, 

541, 548-549, 557, 573

Afghanistan, 594, 608

Agadzhanov, Pavel A., 157, 159-160, 167, 

188, 249, 322-326, 331, 370-371, 373, 

476, 478, 487

Agena target vehicle, 157, 159-160, 167, 

188, 249, 322-326, 331, 370-371, 373, 

476, 478, 487

Air Defense Troops (PVO) and systems, 27, 

28, 37, 84, 179, 386, 390, 414, 536

Air Force (VVS), xi, xvi, xxx, 40, 92, 106, 

156, 166, 169, 179, 362, 363, 394, 399, 

431, 468, 471, 472

Air Force Academy, 166

Air Force Medical Monitoring Service, 361

Air Force State Red Banner Scientific-

Research Institute (GKNII VVS), 166

Aksenov, Vladimir V., 507

Alabama, 39, 42

Alaska, 313

Aldrin, Edwin E. “Buzz”, x, xxi, 57

Aleksandrov, Anatoliy P., 59-60

Alekseyev, Leonid I., 117, 235, 421, 455

All-Union Film Festival, 568

All-Union Scientific-Research Institute of 

Current Sources, see VNIIT

All-Union Scientific-Research Institute of 

Electromechanics, see VNIIEM

All-Union Scientific-Research Institute of 

Power Sources, 28

All-Union Scientific-Research Institute of 

Television, see VNIIT

Alma-Ata, 162

Almaz piloted space station, xxiv, 22-23, 

243-246, 269, 271, 273, 276, 279, 281, 

283-289, 309-310, 317-318, 322, 347, 

381-382, 407, 463, 464, 499, 538, 552, 

556; launches of, 23, 484-485, 491, 496-

497; use of Almaz to create DOS, 243, 

247-249, 253-268

Alper, Naum Ya., 149

Altair relay satellite, 520



Ametist cruise missile, 24

An-24 airplane, 474

Anfimov, Nikolay A., 538

Angara family of launch vehicles, 76, 616

Anokhin, Sergey N., 312-313

antiaircraft missiles, see Air Defense Troops

antiballistic missiles, see Anti-Missile 

Defense


antimissile defense (PRO) forces/systems, 

xxvii, 20, 26, 27, 37, 84, 179, 246, 316, 

386, 390, 516, 518, 536, 591, 616, 619

antisatellite systems, see antispace defense; 

see also IS (Satellite Destroyer)

antispace defense (PKO) forces/systems, 

27, 246, 276, 316; see also IS (Satellite 

Destroyer)

Antipov, Yevgeniy F., 466

Antonov, Yu. P., 194195

Apollo AS-202 mission, 135

Apollo Command and Service Module 

(CSM), 51, 56, 184

Apollo spacecraft/program, xviii-xix, xxi, 

xliii, 12, 39-57, 80, 140, 173, 185, 242, 

261-262, 282, 335-336, 437, 568, 585, 

587, 590

626


Index

Apollo 1 fire, 51, 55, 57

Apollo 4 mission, 51, 55

Apollo 6 mission, 155

Apollo 7 mission, 56

Apollo 8 mission, 14, 56, 171, 183-184

Apollo 9 mission, 56, 213

Apollo 10 mission, 215-216, 238

Apollo 11 mission, x, xxi, xli, 42, 57, 231, 

238


Apollo 13 mission, 57, 272

Apollo 14 mission, 292

Apollo 17 mission, 57

Apollo-Soyuz Test Project (ASTP), 318, 323, 

407-408, 410, 503, 504, 525, 533, 536-

538, 548, 551, 555, 559, 577, 585, 596

apparent velocity control system, see RKS

Appazov, Refat F., 194



Application of Quaternions in Solid Body 

Orientation Problems (book), 465

Aral Sea, 11, 294

Archive of the President of the Russian 

Federation (APRF), xxix 

Archive of the Russian Academy of Sciences 

(ARAN), xviii

Arctic, xiii, 281, 681

Arefyev, Vyacheslav P., 456, 464



Argon-11 digital computer, 13

Argon-16 digital computer, 245

Armenian Academy of Sciences, 430

Armstrong, Neil A., x, xxi, xli, 57

Army Ballistic Missile Agency (ABMA), 

39-40, 44

Arsenal Factory, 127, 349

Arsentyev, V. M., 194

Artyukhin, Yuriy P., 496-497

ASTP, see Apollo-Soyuz Test Project

Atkov, Oleg Yu., 513

Atlas/Atlas-D ICBMs and derived launch 

vehicles, 48, 153, 585

Atlas Centaur, 585

atomic energy, see nuclear energy

atomic industry, see nuclear industry

atomic scientists, see nuclear scientists

atomic weapons, see nuclear weapons

Avdeyev, Sergey V., 600

Averbukh, Vladimir Ya., 151

Aviapribor Factory, 31, 466



Aviatsiya i kosmonavtika (journal), xi-xii

Azarov, Anatoliy V., 188, 298

Azov Optical-Mechanical Factory, 225, 255, 

337, 453


B

B-29 Flying Fortress bomber, 227

Babakin, Georgiy N., 9, 28-29, 113, 138, 

171, 185, 189, 190, 215-216, 233, 238, 

307, 339, 344, 375, 396

Babkov, Oleg I., 117, 173, 255, 310, 455, 

498

Bakhchivandzhi, Grigoriy Ya., 540



Baklanov, Oleg D., 580, 598-599

ballistic missile defense, see missile defense 

systems

Barmin, Vladimir P., 78, 90, 92, 136, 138, 



191-192, 200, 202, 204-205, 217, 220, 

229, 266, 285, 388, 418, 473, 540, 545-

548, 550, 553, 558, 569-571, 595-596, 

598


Bashkin, Yevgeniy A., 117, 175, 247, 248, 

250, 255, 259, 293, 297, 300, 301, 306, 

308, 323, 327, 342, 359, 363, 455, 461, 

462, 466, 469, 470, 477-478, 483, 498

Bashkirtsev (fictional character), 389, 521-

522, 560, 562, 565-566, 568

Battle of Borodino, 560

Battleship Potemkin (movie), 560

Bauman Moscow State Technical School 

(MVTU), 79

Baykonur Cosmodrome, xlii, 35, 176, 290, 

350, 353, 416, 427, 438, 484, 539; see 

also Tyuratam

Bazhanov, Yuriy A., 466

BBC (British Broadcasting Corporation), 

226

Bedarev, Oleg, 391-392



Bedareva, Mira, 391-392

Beijing, 465

Belikov, Vladimir N., 305

Belov, Nikolay I., 460

Belyayev, Pavel I., 361, 366, 472, 477, 479 

Beregovoy, Georgiy T., 166-167, 188, 189, 

250, 334, 472-483, 506, 520, 564

Beriya, Lavrentiy P., 246

Besserezhnov, M. F., 188

Bessonov, V. M., 119

Bezverbyy, Vitaliy K., 195, 246, 315 

Bion spacecraft, 19

Black Sea, 376, 503

Bleicherode (Germany), 351, 353, 365, 414

Block A (first stage) of N-1 rocket, 73, 93-94, 

119-120, 141, 151, 201-202, 207, 208, 

228, 230, 234, 300, 418, 424-427, 434, 

439, 441-445

627


Rockets and People: Moon Race

Block B (second stage) of N-1 rocket, 73, 

94, 141, 199, 202, 207, 209, 234, 424, 

426-427, 439, 441-445

Block D (L3 stage/Proton upper stage), 12, 

13, 22, 76, 88-89, 94-98, 121, 128, 175, 



181, 199, 228, 236, 239, 259, 269, 339, 

345, 410, 420, 422, 427, 433, 439-440, 

596

Block G (L3 stage), 76, 88-89, 91, 94-97, 



121, 128, 175, 199, 228, 234, 410, 420, 

427, 433, 435, 439-440, 596

Block I (of R-7-based launch vehicles), 82, 

322, 370


Block I engine of LOK, 88, 91, 94-97, 121, 

128


Block L (of Molniya booster), 82, 313

Block R (planned upper stage of N-1), 258, 

261

Block S (planned upper stage of N-1), 258, 



261

Block SR (planned upper stage of N-1), 596

Block V (third stage of N-1 rocket), 73-74, 

94, 141, 151, 199, 207, 209, 234, 423, 

424, 427, 439, 446

Block Ye engine of LK, 27, 88, 91, 94-97, 

108, 121, 128, 269

Bobrov, Yevgeniy G., 365

Bobyrev, Igor T., 188, 221

Boeing company, 54

Bogdanovskiy, Stanislav P., 533, 580

Bogomolov, Aleksey F., 92, 105, 324, 375, 

376, 418, 423, 424, 442, 443, 456, 558, 

570


Bogomolov, Vladislav N., 298, 385-387

Boguslavskiy, Yevgeniy Ya., 391

Boldyrev, Grigoriy G., 459

Bolkhovitinov, Viktor F., 523-524

Bolshevo, 325

Bondaryuk, Mikhail M., 60

Borisenko, Aleksey A., 422

Borisenko, Yuriy N., 498, 513

Borisov, Vladimir A., 409

“Boris Yevseyev” (Chertok’s pseudonym), xi

Bragazin, Aleksandr F., 513

Branets, Vladimir N., 455, 465, 466, 498

506, 510, 511, 513

Bratslavets, Petr F., 164, 298, 372, 473

Brezhnev, Leonid I., 63, 107, 113, 125, 

133-135, 138-139, 168, 177, 188, 237, 

239, 272, 318, 319, 323, 334, 359, 366, 

374, 390, 397, 402, 472, 495, 536, 568-

569, 572

British Museum, 624

Brodskiy, Emil B., 194, 234, 419

Budenny, Semyon M., 131

Budker, Gersh I., 246

Bugayskiy, Viktor N., 267, 284, 291, 292, 

293, 299, 305, 309

Bugrov, Vladimir Ye., xxvii

Bulgaria, 323

Bululukov, Vladimir A., 295, 296, 297

Bunkin, Boris V., 304, 492

Buran reusable space shuttle, xi, 437-

438, 455, 574; origins of, 521-581; 

and launch of, 576-577, 606; see also 

Energiya-Buran

Burnazyan, Avetik I., 397, 400, 401



Burya cruise missile project, 262

Bush, George W., 592

Bushuyev, Konstantin D., 85, 87, 93, 99, 

102, 103, 105, 107, 108, 110, 112, 113, 

125, 126, 131, 132, 136, 139, 147-148, 

154, 172-173, 181-183, 186, 189, 195

220-222, 225, 227, 243, 246, 248, 

253-256, 259-260, 263, 264-265, 266-

267, 284, 290, 293, 299, 304, 307-311, 

314-315, 317-318, 334-336, 357, 359, 

364-367, 378, 397, 458-459, 469, 471-

473, 482, 528, 537, 556, 571, 596-597

and Apollo-Soyuz Test Project (ASTP), 

410, 439-440, 533, 548, 556, 596-597; 

and death of, 597

Bykov, Yuriy S., 83, 105, 161, 456




Download 4.92 Mb.

Do'stlaringiz bilan baham:
1   ...   44   45   46   47   48   49   50   51   52




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2020
ma'muriyatiga murojaat qiling