[-]
Download 1.57 Mb. Pdf ko'rish
|
funksional analiz misol va masalalar yechish 1 qism
E
& ! m (x) = min {f(x), g(x)} ! % * f g E & ! M (x)= max {f(x), g(x)} ! %$ * f E ! h (x) = [f(x)] ! ' [x] x %% f : E → R ! ! f 3 ! %& * f g E & ! ϕ : R 2 → R " h (x) = ϕ(f(x), g(x)) ! %' f : E → R ! ! h (x) = e f (x) ! %. h (x) = cos f(x) ! f : E → R ! ! 7`" 37#5 " f % / = & f (x) = u(x)+i v(x) * u v ! f : E → C * & f (x) = u(x) + i v(x) ! ! % = & f (x) = e ix , x ∈ [−π, π] ! " % f : [0, 1] → R y ∈ R ! N f (y) f (x) = y ! N f : R → Z + " ! % 0 ! A & f : A → R ! % * f : E → R ! g : E → R f E ! % $ * f : [0, 1] → R g : [0, 1] → R % % * {f n } ! " E & " f - {x ∈ E : f(x) < c} = ∞ ∪ k =1 ∞ ∪ n =1 ∞ ∩ m>n x : f m (x) < c − 1 k . (6.6) % & * {f n } ! " x ∈ E f (x) f ! " % ' 0 {f n } " ! ∞ n =1 f n (x) ! x ∈ E ! f (x) = ∞ n =1 f n (x) % . [0, 1] ! %$/ < f : R → R ! 5 f (x) = ∞ n =1 (−1) n |x| + n , 5 f (x) = ∞ n =1 sin(n[x] 4 ) n √ n , %$ < f : R 2 → R ! f (x, y) = ∞ n =1 sin(n(x 2 + y 2 )) " n 4 [1 + x 2 + y 2 ] . %$ < f : R 2 → R ! - 5 f (x, y) = sign(cos π(x 2 + y 2 )), 5 f (x, y) = (|x| + |y|) · e [y] , !5 f (x, y) = [x] 2 + [y] 3 , 5 f (x, y) = ln(1 + [x 2 + y 2 ]). %$ f n (x) = cos n x, E = [0, 2π] " %$ * E & {f n } ! " f f ! %$$ * E & {f n } ! " f f ∼ g {f n } " g %$% * {f n } ! " f, g f g %$& 1 * {f n } ! " E (μ(E) < ∞) & f {f n } " E & f ! ! %$' . ! ! ! {f n } " %$. 6 * {f n } ! " E & f ! ! {f n } " f ! " + %%/ f : [−1, 2] → R, f(x) = sign x ! ( %% [0, π] f (x) = ⎧ ⎨ ⎩ sin x, x ∈ [0, π] \Q cos 2 (sin x), x ∈ Q ! / %% * f : E → R− ! A ⊂ E− ! & f : A → R A & ! %% * f ∼ g g ∼ ϕ f ∼ ϕ %% f n (x) = cos n x, E = [0, 2π] " ! _ ! E δ & δ = 10 −3 ! %%$ [0, 1] \ Z ! / ! ϕ & %%% f ! " f n " %%& f n (x) = x n , x ∈ [0, 1] " θ (x) ≡ 0 " ! ! %%' f n (x) = x n , x ∈ [−1, 1] " \ Z c %%. \ ! " " c %&/ < f : R → R ! g : R → R & g (x) = f(x) ! x ∈ R ! 5 f (x) = ⎧ ⎨ ⎩ sin x, x ∈ Q 0, x ∈ R\Q, 5 f (x) = ⎧ ⎨ ⎩ arctgx, x ∈ Z π, x ∈ R\Z, !5 f (x) = ⎧ ⎨ ⎩ x 2 , x 2 ∈ Q 0, x 2 ∈ R\Q, 5 f (x) = ⎧ ⎨ ⎩ ln(1 + |x|), e x ∈ R\Q sin x 2 , e x ∈ Q. %& < f : R 2 → R ! g : R 2 → R & g (x, y) = f(x, y) ! (x, y) ∈ R 2 ! 5 f (x, y) = ⎧ ⎨ ⎩ x + y, (x, y) ∈ Q × Q x 2 , (x, y) ∈ R\(Q × Q), 5 f (x, y) = ⎧ ⎨ ⎩ sin x + cos y, (x, y) ∈ Q × R cos x − sin y, (x, y) /∈ Q × R, !5 f (x, y) = ⎧ ⎨ ⎩ xy, (x, y) ∈ (R\Q) × R x + y, (x, y) / ∈ (R\Q) × R, 5 f (x, y) = ⎧ ⎨ ⎩ [x] + [y] , (x, y) ∈ R × Q chx, (x, y) / ∈ R × Q. %& f k : [a, b] → R, k = 1, 2, . . . , n ! < [a, b] ! 5 min {f 1 (x), . . . , f n (x)} ; 5 max {f 1 (x), . . . , f n (x)} ; !5 f 1 (x) ln (2 + |f 2 (x)|) ; 5 f 1 (x) ch[f 2 (x)] ; 5 f 1 (x) · f 2 (x) 1 + |max {f 3 (x), f 4 (x)}| . %& A − ! & f, f n , g n : A → R ! < & ! 5 ∞ ∪ n =1 {x ∈ A : f n (x) ≥ 0} . 5 ∞ ∩ n =1 {x ∈ A : f n (x) ≥ f(x)} . !5 x ∈ A : sup n ≥1 f n (x) = f(x) . 5 x ∈ A : inf n ≥1 f n (x) < f(x) . 5 x ∈ A : lim n →∞ f n (x) > f(x) . 5 x ∈ A : lim n →∞ f n (x) < f(x) . 5 ∞ ∪ n =1 {x ∈ A : f n (x) < g n (x)} . 5 x : inf n ≥1 f n (x) = inf n ≥1 g n (x) . %& < f n : R → R " ! g : R → R " & lim n →∞ f n (x) = g(x) R ! 5 f n (x) = cos n x. 5 f n (x) = 2 π arctg x n + sin n 2x. !5 f n (x) = x 2 · sin n x 2 . 5 f n (x) = n 2 · sin 2 x 1 + n 2 · sin 2 x . 5 f n (x) = sin n x 2 + sin n x . 5 f n (x) = exp(−n ## x 2 − 1 ##) . %&$ < f n : R 2 → R " ! g 1 : R 2 → R g 2 : R 2 → R & lim n →∞ f n (x) = g 1 (x) lim n →∞ f n (x) = g 2 (x) R 2 + 5 f n (x, y) = cos n x 2 + y 2 . 5 f n (x, y) = exp −n x 2 + y 2 . !5 f n (x, y) = exp(−n |x + y|). 5 f n (x, y) = 2 sin n (x 4 +y 4 ) . 5 f n (x, y) = n " |x| Download 1.57 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling