[-]
Download 1.57 Mb. Pdf ko'rish
|
funksional analiz misol va masalalar yechish 1 qism
|f (x
k ) − f (x k −1 ) | ≤ C (9.10) C f [a, b] . 7, + [a, b] f 3$#>5 f [a, b] $ & V b a [f] V b a [f] = sup {x i } n i =1 |f(x i ) − f(x i −1 )| . (9.11) .& f : [a, b] → R [a, b] ! f (b) − f(a) [a, b] x i (i = 1, 2, . . . , n) a = x 0 < x 1 < · · · < x n −1 < x n = b n n k =1 |f (x k ) − f (x k −1 ) | (9.12) f ! |f (x k ) − f (x k −1 ) | = f (x k ) − f (x k −1 ) ' 3$#%5 " f (b) − f(a) ! \ ! 3$#%5 [a, b] " f (b) − f(a) 2 V b a [f] = f(b) − f(a) .' * f : [a, b] → R [a, b) ! V b a [f] = | f(b − 0) − f(a)| + | f(b) − f(b − 0)| (9.13) [a, b] x i (i = 1, 2, . . . , n) [a, b) " - n k =1 |f (x k ) − f (x k −1 ) | = n −1 k =1 |f (x k ) − f (x k −1 ) | + |f (b) − f (x n −1 ) | = = ## ## # n −1 k =1 |f (x k ) − f (x k −1 ) ## ## # + |f (b) − f (x n −1 ) | = = |f (x n −1 ) − f (a) | + |f (b) − f (x n −1 ) |. (9.14) [ ψ (x) = |f(x) − f(a)| + |f(b) − f(x)|, x ∈ [a, b) " ' ! [a, b) ! x 1 < x 2 ! ψ (x 2 ) − ψ (x 1 ) ≥ 0 ψ (x 2 ) = |f(x 2 ) − f(a)| + |f(b) − f(x 2 )| = |f(x 2 ) − f(x 1 ) + f(x 1 ) − f(a)|+ +|f(b) − f(x 1 ) − (f(x 2 ) − f(x 1 ))| = |f(x 2 ) − f(x 1 )| + |f(x 1 ) − f(a)|+ +|f(b) − f(x 1 ) − (f(x 2 ) − f(x 1 ))|. (9.15) 3$#a5 f [a, b) 3 ( f (x 2 )−f(x 1 ) f (x 1 )−f(a) 5 ! " c d ! |c − d| ≥ |c| − |d| ψ (x 2 ) − ψ(x 1 ) = = |f(b) − f(x 1 ) − (f(x 2 ) − f(x 1 )) | + |f(x 2 ) − f(x 1 )| − |f(b) − f(x 1 )| ; ' ψ [a, b) 3$#b5 sup {x j } n k =1 |f (x k ) − f (x k −1 ) | = sup a n−1 ψ (x n −1 ) = ψ (b − 0) ! (; " - V b a [f] = ψ (b − 0) = |f(b − 0) − f(a)| + |f(b) − f(b − 0)|. .. f (x) = sin x [0, π] ! " ( ! "# [0, π] x i (i = 1, 2, . . . , n) n n k =1 |f (x k ) − f (x k −1 ) | = n k =1 | sin x k − sin x k −1 | (9.16) * sin x−sin y = 2 cos x + y 2 sin x − y 2 | sin x| ≤ x, x ≥ 0 3$#75 ! - n k =1 |f (x k ) − f (x k −1 ) | = n k =1 |2 cos x k + x k −1 2 sin x k − x k −1 2 | ≤ ≤ n k =1 2 x k − x k −1 2 = x n − x 0 = π. \ f (x) = sin x [0, π] ! () * +, * *+- + # - $#>"$#`" [a, b] , ! & " , ! & ./ f (x) = [x], [−1, 3] . f (x) = sign x, [−1, 5] . f (x) = χ (0,4] (x), [−2, 4] . f (x) = 2 · sign x + 3 · χ (−1,0) (x), [−4, 5] . [a, b] ! ! Z / ( " ! .$ = f : [a, b] → R ! f c (x) = f(x) − f d (x), x ∈ [a, b] f f c : [a, b] → R ' f d 3$$5 .% = 3 5 3" 5 $#8"$%>" & .& f (x) = x + sign x + χ [−1, 0) (x), x ∈ [−2, 2] .' f (x) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ x 3 , x ∈ [−10, −2), −7, x ∈ [−2, 0), x − 3, x ∈ [0, 4]. .. f (x) = ⎧ ⎪ ⎨ ⎪ ⎩ 2x π + sin 3 x, x ∈ [− π 2 , 0) sin 2 x + sign x, x ∈ [0, − π 2 ] . ./ f (x) = 2x + [x], x ∈ [−2, 4] 3$%#"$%`5 . ! . & . . . f (x) = x+[x] [−2, 1] .$ 2 ! .$ & .% = & " .& . ! ; & ! .' * f (x) ≥ 0, x ∈ [a, b] ! g (x) = $ x a f (t)dt .. c f (x) = x 2 , g (x) = 1 − 2x, x ∈ [0, 2] ./ & c f (x) = x, g(x) = x − 2, x ∈ [0, 2] . * f g [a, b] f (x) ≥ 0 g (x) ≥ 0, ∀x ∈ [a, b] ϕ (x) = g(x) · f(x) [a, b] . * f [a, b] ! f (a) = A, f(b) = B g : [A, B] → R− g (f(x)) [a, b] c . f : [a, b] → R [a, b] ! f (a) − f(b) 1 c . * f : [a, b] → R (a, b] ! V b a [f] = | f(a + 0) − f(a)| + | f(b) − f(a + 0)| .$ * f : [a, b] → R (a, b) ! V b a [f] = | f(a + 0) − f(a)| + | f(b − 0) − f(a + 0)| + | f(b) − f(b − 0)| $`7"$bb" ! " ( .% f (x) = 3x + 1, [0, 2] .& f (x) = 2x 2 + 5, [−1, 3] .. f (x) = 2 cos x, [−π, π] . / f (x) = tg x 4 , [−π, π] . f (x) = ln(1 + x), [0, e] . f (x) = 2 x + 5x, [−2, 3] . f (x) = x e x +1 + 5, [−1, 1] . f (x) = 3|x − 1| + 4, [0, 2] $ba"$a`" . $ * f : [a, b] → R [a, b] ! k ∈ R ! k + f ! " V b a [k + f] = V b a [f] . % * f : [a, b] → R [a, b] ! k ∈ R ! k · f ! V b a [k f] = |k| V b a [f] . . & * f : [a, b] → R [a, b] ! k, l ∈ R ! k · f + l ! V b a [f] [k · f + l] = |k| V b a [f] . . ' f : [a, b] → R [a, b] ! f (x) = const . . f Download 1.57 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling