3. Dizyunktiv birhadlarning kon’yunksiyasiga kon’yunktiv normal shakl (KNSh) deyiladi.Misol. (⌐A1\/A2\/A3 )&(A1\/⌐A2\/⌐A3) . Har bir formulaning cheksiz ko‘p KNSh, DNSh lari mavjud.Ta’rif 1. Agar birhadda Ai yoki ⌐Ai formulalar juftligidan faqat bittasi qatnashgan bo‘lsa, A1, A2, …, An mulohaza o‘zgaruvchilarining kon’yunktiv yoki diz’yunktiv birhadlari mukammal deyiladi.Ta‘rif 2. Agar kon’yunktiv normal shaklda A1,A2,…,An mulohaza o‘zgaruvchilarning takrorlanmaydigan mukammal diz’yunktiv birhadlari qatnashgan bo‘lsa, u holda mukammal kon’yunktiv normal shakl (MKNSh) deyiladi.Ta‘rif 3. Agar diz’yunktiv normal shaklda A1,A2,…,An mulohaza o‘zgaruvchilarning takrorlanmaydigan mukammal kon’yunktiv birhadlari qatnashgan bo‘lsa, u holda mukammal diz’yunktiv normal shakl (MDNSh) deyiladi.
44-bilet.
1. Kombinatorikaning 1-qoidasi: Agar qandaydir A tanlashni m usul bilan, bu usullarning har biriga biror bir boshqa B tanlashni n usulda amalga oshirish mumkin bo‘lsa, u holda A va B tanlashni (ko‘rsatilgan tartibda) usulda amalga oshirish mumkin.
Kombinatorikaning 2-qoidasi.Kombinatorikaning 2-qoidasi: Aytaylik birin-ketin k ta harakatni amalga oshirish talab qilngan bo‘lsin. Agar birinchi harakatni - n1 usulda, ikkinchi harakatni - n2 usulda, va hokazo k – harakatni - nk usulda amalga oshirish mumkin bo‘lsa, u holda barcha k ta harakatni
usulda amalga oshirish mumkin bo‘ladi. p1, p2,...., pn – turli sodda sonlar, qandaydir natural sonlar bo‘lgan quyida berilgan son ta umumiy bo‘luvchiga ega;
Do'stlaringiz bilan baham: |