1. Integral usuli va uni iqtisodiy tahlilda qo‘llanilishi


Download 22.14 Kb.
bet2/2
Sana19.09.2023
Hajmi22.14 Kb.
#1681377
1   2
Bog'liq
IQTISODIY TAHLIL

Integral usul modellari


Modellar

Omillar ta’sirini aniqlash

f=xy

fx+∆fy=∆f

X omili ta‘siri

∆fx = ∆xy0 +1/2∆x∆y, yoki ∆fx = 1/2∆x(y0 +y1)

Y omil ta‘siri

∆fy = ∆yx0 +1/2∆x∆y, yoki ∆fy = 1/2∆y(x0 +x1)

f=xyz.

fx+∆fy+∆fz =∆f

X omili ta‘siri

∆fx = 1/2∆x (y0z1+y1z0)+1/3∆x∆y∆z;

Y omili ta‘siri

∆fy = 1/2∆y (x0z1+x1z0)+1/3∆x∆y∆z;

Z omili ta‘siri

∆fz = 1/2∆z (x0y1+x1y0)+1/3∆x∆y∆z.

f=xyzq

fx+∆fy +∆fz +∆fq =∆f

X omili ta‘siri

∆fx=1/6∆x*[3q0*y0*z0+y1*q0(z1+∆z)+q1*z0(y1+∆y)+z1* y0(q1+∆q)]+ ∆x*∆y*∆z*∆q / 4;

Y omili ta‘siri

1/6∆y*[3q0*x0*z0+x1*q0(z1+∆z)+q1*z0(x1+∆x)+z1*x0(q 1+∆q)]+∆x*∆y*∆z*∆q / 4;

Z omili ta‘siri

fz=1/6∆z*[3q0*x0*y0+x0*q1(y1+∆y)+y1*q0(x1+∆x)+x1* y0(q1+∆q)]+ ∆x*∆y*∆z*∆q / 4;

q omili ta‘siri

1/6∆q*[3z0*x0*y0+x0*z1(y1+∆y)+y1*z0(x1+∆x)+x1*y0(z 1+∆z)]+ ∆x*∆y*∆z*∆q / 4.

Natijaviy ko’rsatkichga omillar ta‘sirini quyidagi misollar asosida ko’rib chiqishimiz mumkin.
2.19-jadval
Mahsulot hajmi o’zgarishiga ishchilar soni va mehant unumdorligining ta’sirini tahlili

Ko’rsatkichlar

O’tgan yil

Haqiqatda

Farqi (+;-)

Ishchilar soni, kishi (X)

144

152

+8

Bir ishchi tomonidan ishlab chiqarilgan mahsulot, ming so’m (Um)

1235

1207

-28

Mahsulot hajmi, ming so’m (F)

177840

183464

+5624

Omillar ta‘sirini hisoblash quyidagicha bajariladi:
F = X * Y

  1. Fx=(8*1235) + ½(8*(-28))=9880+(-112)= +9768.0

  2. Fy=(-28*144)+1/2(-28*8)=-4032+ (-112)= - 4144.0 ΔF=ΔFx+ΔFy= 9768 + (-4144) = 5624.0

Ishchilar sonini 8 kishiga ko’payishi mahsulot hajmini 9768 ming so’mga oshirgan. Bir ishchi tomonidan ishlab chiqarilgan mahsulotni 28 ming so’mga kamayishi esa mahsulot hajmini 4144 ming so’mga kamaytirgan.
2.20-jadval
Mahsulot hajmi o’zgarishiga ishchilar soni, o’rtacha ishlangan kun hamda bir kunga to’g’ri keladigan mahsulot hajmining ta’sirining tahlili

Ko’rsatkichlar

O’tgan yil

Haqiqatda

Farqi (+;-)

Ishchilar soni, kishi (X)

203

212

+9

Bir ishchiga to’g’ri keladigan o’rtacha ishlangan kun, kishi kuni (Y)

278

270

-8

O’rtacha ishlangan bir kunga to’g’ri keladigan mahsulot hajmi, ming so’m (Z)

104

111

+7

Mahsulot hajmi, ming so’m (F)

5869136

6353640

484504

F = X * Y* Z

  1. Fx=(1/2*9)*(278*111+270*104) + 1/3*9*(-8)*7=+265053

  2. Fy=(1/2*(-8))*(203*111+104*212)) + 1/3 *9*(-8)*7=-178492 3. Fz=(1/2*7)*(203*270+212*278) + 1/3 *9*(-8)*7=+397943

ΔF=ΔFx+ΔFy+ΔFz=265053 + (-178492) + 397943 =+484504
Download 22.14 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling