1. Renewables 2017 Global status Report. Ren21 Steering Committee. P


Download 29.64 Kb.
bet1/2
Sana21.01.2023
Hajmi29.64 Kb.
#1107395
  1   2
Bog'liq
Adabiyotlar


1. Renewables 2017 Global status Report. REN21 Steering Committee. –P. 30.
2. Renewables 2017 Global status Report. REN21 Steering Committee. –P. 30.
3. International Renewable Energy Agency (IRENA). Renewable Capacity Statistics 2018. – P. 2-4.
4. https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS?locations=UZ&view=chart (Мурожаат санаси: 07.08.2018)
5. Колтун М. М. “Оптика и метрология солнечных элементов” М. Наука, 1985 – г.
6. Фаренбрух А., Бьюб Р., “Солнечные элементы: теория и эксперимент” М. Энергоатомиздат, 1987 – г.
7. Абдиев У.Б. “Физика таълимида ноанъанавий энергия манбалари”, илмий – услубий қўлланма, Термиз 2013 – йил.
8. Мўминов Р.А., Абдиев У.Б. Узлуксиз физика таълимида ноанъанавий энергия манбалари. «Таълим технологиялари» журнали махсус сони, 2012 – йил, 24 – 26 бетлар.
9. Водород // https://nangs.org/news/renewables/vodorodnaya-lihoradka-zelenogo-keynsianstva
10. Япония рассчитывает «озеленить» энергетику за счёт добычи гидрата метана // https://3dnews.ru/1035343/yaponiya-rasschitivaet-ozelenit-energetiku-za-schyot-dobichi-gidratametan
11. . Komatsu хочет стать лидером в производстве карьерных самосвалов на водороде //https://3dnews.ru/1033174/komatsu-hochet-stat-liderom-v-proizvodstve-karernih-samosvalov-navodorode
12. Австралия может стать мировым производителем “зеленого” водорода // https://teknoblog.ru/2021/07/23/112784
13. Источники Энергии Дронов – Раздвигая Границы Электрического Полета //https://radiocopter.ru/istochniki-energii-dronov-razdvigaya-granitsy-elektricheskogo-poleta/
14. Apple запатентовала мобильное устройство с питанием от водородного топливного элемента // https://php.ru/news/687814
15. Tethered Chem Combos Could Revolutionize Artificial Photosynthesis // https://www.bnl.gov/newsroom/news.php?a=116868
16. Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation. B.P. Tarasov, M.V. Lototskii, V.A. Yartys, April 2007 Russian Journal of General Chemistry 77(4):694-711.
17. BMW Hydrogen Cars, http://www.bmwworld.com.
18. Lototsky, M.V. and Yartys, V.A., J. Power Sources (in press).
19. Zaluski, L., Zaluska, A., and Strom-Olsen, J.O., J. Alloys Compounds, 1999, vol. 290, p. 71.
20. Semenenko, K.N., Verbetskii, V.N., and Kochukov, A.V., Dokl. Akad. Nauk USSR, 1981, vol. 258, p. 362.
21. . Bell, N.A. and Coates, G.E., J. Chem. Soc., 1968, vol. 1968, p. 62.
22. Обзор СМИ по тематике: энергетика, альтернативна энергетика, энергосбережение, энергоэффективность с 19 по 25 июля 2021 г. // http://kazee.kz/userfiles/ufiles/meropriyatiya/informatsionnyy_daydzhest_24___.pdf
23. Катализатор для добычи водорода из воды https://3dnews.ru/1044872/yapontsi-sozdali-effektivniykatalizator-dlya-dobichi-vodoroda-iz-vodi-s-pomoshchyu-solnechnogo-sveta
24. Boretti, A. and B.K. Banik, Advances in hydrogen production from natural gas reforming. Advanced Energy and Sustainability Research, 2021. 2(11): p. 2100097.
25. Konieczny, A., et al., Catalyst development for thermocatalytic decomposition of methane to hydrogen. International Journal of Hydrogen Energy, 2008. 33(1): p. 264-272.
26. Sahaym U, Norton MG. Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J Mater Sci 2008;43:5395-429.
27. Jia Y, et al. Combination of nanosizing and interfacial effect: future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew Sustain Energy Rev 2015;44:289-303.
28. Balema V. Hydrogen storage materials. Mater Matters 2007;2(2):2.
29. Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 2007;32:1121-40.
30. Yang Z, Weil KS, Michael PB. Materials in clean power systems: applications, status and challenges. Int J Hydrogen Energy 2007;32:3609.
31. Zhang Y, et al. Development and application of hydrogen storage. J Iron Steel Res Int 2015;22(9):757-70.
32. Hwang HT, Varma A. Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng 2014;5:42-8.
33. Chalk SG, Miller JF. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 2006;159:73-80.
34. Shao H, et al. Nanotechnology in Mg-based materials for hydrogenstorage. Nano Energy 2012;1:590-601.
35. Ruse E, et al. Hydrogen storage kinetics: the graphene nanoplatelet size effect. Carbon 2018;130:369-76.
36. Teichmann D, Arlt W, Wasserscheid P, Freymann R. A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci 2011;4:2767–73.
37. Gamburg, D.Yu., Semenov, V.P., Dubovkin, N.F., and Smirnova, L.N., Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie. Spravochnik (Hydrogen. Properties, Production, Storage, Transportation, Application. Reference Book), Gamburg, D.Yu. and Dubovkin, D.F., Eds., Moscow: Khimiya, 1989.
38. Hart, D., Financial Times Energy Publishing, a Division of Pearson Professional, 1997.
39. Hydrogen Composite Tank Program, Proc. 2002 U.S. DOE Hydrogen Program Review, NREL/CP--610- 32405.
40. Lobach, A.S., Tarasov, B.P., Shu’lga, Yu.M., and Perov, A.A., Izv. Akad. Nauk, Ser. Khim., 1996, no. 2, p. 483.
41. Tarasov, B.P., Fokin, V.N., Moravskii, A.P., and Shul’ga, Yu.M., Ibid., 1997, no. 4, p. 679.
42. Mao WL, Mao H, Goncharov AF, Struzhkin VV, Guo Q, Hu J, et al. Hydrogen clusters in clathrate hydrate. Science 2002;297:2247–9.
43. Lee H, Lee J, Kim YD, Park J, Seo YT, Zeng H, et al. Tuning Clathrate hydrates for hydrogen storage. Nature 2005;434:743–6.
44. Mao WL, Mao H. Hydrogen storage in molecular compounds. Proc Natl Acad Sci USA 2004;101:708–10.
45. Darkrim FL, Malbrunot P, Tartaglia GP. Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 2002;27:193–202.
46. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997;386:377–9.
47. Hydrogen storage: Materials, methods and perspectives. Saba Niaz, Taniya Manzoor, Altaf Hussain Pandith, Department of Chemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India. http://dx.doi.org/10.1016/j.rser.2015.05.011 , 1364-0321/& 2015 Elsevier Ltd. All rights reserved.
48. Zhou YP, Feng K, Sun Y, Zhou L. A brief review on the study of hydrogen storage in terms of carbon nanotubes. Prog Chem (Chin) 2003;15:345–50.
49. Zhou L. Progress and problems in hydrogen storing methods. Renewable Sustainable Energy Rev 2005;9:395–408.
50. Sakintuna B, Darkrim FL, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 2007;32:1121–40.
51. Schulz R, Huot RJ, Liang G, Boily S, Van Neste A. Structure and hydrogen sorption properties of ball milled Mg dihydride. Mater Sci Forum 1999;312– 314:615–22.
52. The Japan Steel Works, Hydrogen Energy Center, http://www.jsw.co.jp/.
53. Japan Metals and Chemicals, Department of Metal Hydride Alloy Business, http://www.jmc.co.jp.
54. Dantzer, P., Top. App. Physics, 1997, vol. 73, p. 279.
55. Ivanovsky, A.I., Kolosov, V.I., Lototsky, M.V., Solovey, V.V., Shmal’ko, Yu.F., and Kennedy, L.A., Int. J. Hydrogen Energy, 1996, vol. 21, p. 1053.
56. Kuliev, S.I., Kljamkin, S.N., Verbetskii, V.N., GasanZade, A.A., and Semenko, K.N., Izv. Akad. Nauk USSR, Ser. Metals, 1988, vol. 1, p. 173.
57. Podgorny, A.N., Shmal’ko, Yu.F., Solovey, V.V., and Lototsky, M.V., Hydrogen Energy VII, Proc. 7th World Hydrogen Energy Conf., Veziroglu, T.N. and Protsenko, A.N., Eds., New York: Pergamon, 1988, vol. 2, p. 1401.
58. Ergenics, Inc., http://www.hydrides.com/.
59. Nasako, K., Ito, Y., Hiro, N., and Osumi, M., J. Alloys Comp., 1998, vol. 264, p. 271.
60
Download 29.64 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling