1. Renewables 2017 Global status Report. Ren21 Steering Committee. P


Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation


Download 29.64 Kb.
bet2/2
Sana21.01.2023
Hajmi29.64 Kb.
#1107395
1   2
Bog'liq
Adabiyotlar

. Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation. B.P. Tarasov, M.V. Lototskii, V.A. Yartys, April 2007 Russian Journal of General Chemistry 77(4):694-711.
61. Gamburg, D.Yu., Semenov, V.P., Dubovkin, N.F., and Smirnova, L.N., Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie. Spravochnik (Hydrogen. Properties, Production, Storage, Transportation, Application. Reference Book), Gamburg, D.Yu. and Dubovkin, D.F., Eds., Moscow: Khimiya, 1989.
62. Schlapbach, L., MRS Bulletin, 2002, September, p. 675.
63. Zuttel, A., Materials Today, 2003, September, p. 24.
64. Yartys, V.A. and Lototsky, M.V., Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Veziroglu, T.N., Zaginaichenko, S.Yu., Schur, D.V., Baranowski, B., Shpak, A.P., and Skorokhod, V.V., Eds., Netherlands: Kluwer Academic, 2004, p. 75.
65. A Multiyear Plan for the Hydrogen R&D Program: Rationale, Structure, and Technology Roadmaps, Office of Power Delivery, Office of Power Technologies, Energy Efficiency and Renewable Energy, U.S. Department of Energy, August 1999.
66. Hart, D., Financial Times Energy Publishing, a Division of Pearson Professional, 1997.
67. Dynetek. Asia-Pacific Natural Gas Vehicles Summit, Brisbane, Australia, April 10, 2001, Rene Rutz, VP Marketing and Business Development.
68. Tsiklis, D.S., Tekhnika fiziko-khimicheskikh issledovanii pri vysokikh i sverkhvysokikh davleniyakh (Techniques of Physical and Chemical Research at High and Ultrahigh Pressures), Moscow: Khimiya, 1976.
69. Eihusen, J.A., Proc. 15th World Hydrogen Energy Conf. WHEC-15, Yokohama, Japan, June 272, 2004, p. 301.
70. Wolf, J., MRS Bulletin, 2002, September, p. 684.
71. National Aeronautics and Space Administration: SHUTTLEPOWER, http://shuttle.msfc.nasa.gov.
72. Yu X. et al. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Progress in Mater. Sci. 2017, vol. 88, pp. 1-48.
73. Zhevago N.K., Chabak A.F., Denisov E.I., Fateev V.N, Glebov VI, Korobtsev SV. Safe storage of compressed hydrogen at ambient and cryogenic temperatures in flexible glass capillaries. International Conference on Hydrogen Safety ICHS 2013, Brussels, Belgium, 2013, Paper 157. http://www.ichs2013.com/images/papers/157.pdf
74. Pragma Industries https://www.pragma-industries.com/.../hydrogen-storage/
75. ANDERSEN, H. C., 1980, ft. chem. Phys., 72, 2384.
76. TANAKA, H., NAKANISHI, K., and WATANABE, N., 1983, J. chem. Phys., 78, 2626.
77. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham. Intermolecular forces: their origin and determination. Clarendon Press, Oxford, 1981.
78. C. G. Gray and K. E. Gubbins. Theory of molecular fluids. 1. Fundamentals. Clarendon Press, Oxford, 1984.
79. M. Sprik. Effective pair potentials and beyond. In Michael P. Allen and Dominic J. Tildesley, editors, Computer simulation in chemical physics, volume 397 of NATO ASI Series C, pages 211–259, Dordrecht, 1993. Kluwer Academic Publishers. Proceedings of the NATO Advanced Study Institute on ‘New Perspectives on Computer Simulation in Chemical Physics’, Alghero, Sardinia, Italy, September 14–24, 1992.
80. A. J. Stone. The Theory of Intermolecular Forces. Clarendon Press, Oxford, 1996.
81. A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev. A, 136:405–411, 1964.
82. L. Verlet. Computer experiments on classical fluids. i. thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159:98–103, 1967.
83. S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner. A new force-field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., 106:765–784, 1984.
84. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic molecules. J. Am. Chem. Soc., 117:5179–5197, 1995.
85. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J States, S. Swaminathan, and M. Karplus. CHARMM - A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 4:187–217, 1983.
86. W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 118:11225–11236, 1996.
87. Michael P. Allen and Dominic J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, hardback, 385pp edition, 1987.
88. Computer Simulation of Liquids. © M. P. Allen and D. J. Tildesley 2017.
89. L. Verlet. Computer experiments on classical fluids. i. thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159:98–103, 1967.
90. D. Knuth. The art of computer programming. Addison-Wesley, Reading MA, 2nd edition, 1973.
91. R. W. Hockney and J. W. Eastwood. Computer simulations using particles. Adam Hilger, Bristol, 1988.
92. Ansari, P., Azamat, J. & Khataee, A. 2019. Separation of perchlorates from aqueous solution using functionalized graphene oxide nanosheets: a computational study. Journal of Materials Science, 54, 2289- 2299.
93. Azamat, J. & Khataee, A. 2016a. Removal of nitrate ion from water using boron nitride nanotubes: insights from molecular dynamics simulations. Computational and Theoretical Chemistry, 1098, 56-62.
94. Azamat, J. & Khataee, A. 2017. Molecular dynamics simulations of removal of cyanide from aqueous solution using boron nitride nanotubes. Computational Materials Science, 128, 8-14.
95. Azamat, J., Khataee, A. & Sadikoglu, F. 2018. Computational study on the efficiency of MoS2 membrane for removing arsenic from contaminated water. Journal of Molecular Liquids, 249, 110-116.
96. OʻzME. Birinchi jild. Toshkent 2000-yil
97. ↑ ГОСТ 2768-84. Ацетон технический. Технические условия.
98. DL_POLY package from CCLRC Daresbury Laboratory, see http://www.cse.clrc.ac.uk.
99. A. Perera and F. Sokolic, J. Chem. Phys. 121, 11272 (2004).
100. Modeling nonionic aqueous solutions: The acetone-water mixture. Aurlien Perera and Franjo Sokolić, J. Chem. Phys. 121, 11272 (2004); doi: 10.1063/1.1817970
101. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comp. 2008, 4, 435–447.
102. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225−11236.
103. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269−6271.
104. Thomas, K. T.; McAllister, R. A. Densities of Liquid-Acetone-Water Solutions up to Their Normal Boiling Points. A.I.Ch.E. Journal 1957, 3, 161−164.
105. Tuckerman, M. E.; Statistical Mechanics: Theory and Molecular Simulation.; Oxford University Press, 2010.
106. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory. Comput.; 2008, 4, 435-447.
107. Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem.; 1997, 18, 1463-1472.
108. Sabine, E.; Heike, K.; Jochen, W. Surface Tension of the Ternary System Water+Acetone+Toluene. J. Chem. Eng. Data.; 2007, 52, 1072-1079.
109. Wang, P.; Anderko, A.; Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Eq.; 2001, 186, 103-122.
Download 29.64 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling