10 (3) (2018) 648-654 Biosaintifika
Download 225.81 Kb.
|
Enhancing Students Logical-Thinking Ability in Na
CONCLUSION
Based on the analysis and description of the study results, it can be concluded that the ability to think logically between the students in the experimental class applying generative lear-ning model and the students in the control class is significantly different. The average of students’ logical-thinking abilities applying the generative learning model is higher than that of the control class. The results of the analysis can be used by the schools and teachers for evaluating the quali-ty of natural science learning in order to encoura-ge students’ logical-thinking abilities. ACKNOWLEDGMENT This study is financially supported by Lembaga Pengelola Dana Pendidikan (Indonesia Endowment Fund for Education) in 2018, mana-ged by The Ministry of Finance, Indonesia. REFERENCES Anderman, E. M. (2010). Reflections on Wittrock’s generative model of learning: a motivation per-spective. Educational Psychologist, 45(1), 56-60. Çimer, A. (2012). What makes biology learning difficult and effective : Students’ views, 7(3), 61–71. https://doi.org/10.5897/ERR11.205. Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2012). Improving students’ learning with effective learning tech-nique. Psychology in the Public Interest, 141: 4-58. Fiorella, L., Mayer, R., & Barbara, S. (2015). Learning as a Generative Activity : Eight Learning Strat-egies that Promote Understanding. Cambridge University Press. https://doi.org/10.1017/ CBO9781107707085 Grabowski, B. L. (2007). Generative learning contribu-tions to the design of instruction and learning. Journal of Educational Psychology, 28(1): 719-743. Hake, R. R. (2007). Six Lessons From The Physics Ed-ucation Reform Effort. J. Phys. Edu. 1(1) 24-31. Lee, H. W., Lim, K. Y., & Grabowski, B. L. (2007). Generative Learning : Principles and Implica-tions for Making Meaning, 111–124. Martin, M. O., & Mullis, I. V. S. (2015). TIMSS 2015 International Results in Science. International Study Center. Retrieved from http://timss2015. org/download-center. Ministry of Education and Culture Indonesia. 2013. Dokumen Kurikulum 2013. Jakarta: Kemendik-bud. Oliva, J. M. (2003). The Structural Coherence of Stu-dents’ Conceptions in Mechanics and Concep-tual Change. International Journal of Science Edu-cation, 25: 539-561. Pamungkas, A. S., & Setiani, Y. (2017). Peranan Pen-getahuan Awal dan Self Esteem Matematis Terhadap Kemampuan Berpikir Logis Maha-siswa, 8(1), 61–68. Papadopoulos, I., Kogias, D., Patrikakis, C., & Cha-ra, C. M. (2017). Enhancing the Student’s Logical Thinking with Gherkin language. IEEE Global Engineering Education Conference, 1543–1547. https://doi.org/10.1109/EDU-CON.2017.7943054 Parmin, Sajidan, Ashadi, Sutikno, & Fibriana, F. (2017). Performance assessment of practicum work : Measuring the science student teachers’ logical thinking abilities. Man in India, 97(13), 141–152. Pezzuti, L., Artistico, D., Chirumbolo, A., Picone, L., & Dowd, S. M. (2014). The relevance of logical thinking and cognitive style to everyday prob-lem solving among older adults. Learning and Individual Differences, 36, 218–223. https://doi. org/10.1016/j.lindif.2014.07.011 Pilegard, C., & Fiorella, L. (2016). Helping students help themselves : Generative learning strategies improve middle school students’ self-regulation in a cognitive tutor. Computers in Human Behav-ior, 65, 121–126. https://doi.org/10.1016/j. chb.2016.08.020 Puspendik. (2018). Hasil TIMSS 2015. Diagnosa Hasil untuk Perbaikan Mutu dan Peningkatan Pen-capaian. Retrieved from https://puspendik. kemdikbud.go.id. Ridlo, S., & Alimah, S. (2013). Competency and Con-servation-Based Strategies in Biology Learn-ing. Biosaintifika, 5(2), 121–129. Sadi, O., & Çakıroğlu2, J. (2015). The Effect of Logi-cal Thinking Ability and Gender on Science Achievements and Attitudes towards Science. Croatian Journal of Education, 17(3), 97-115. Seyhan, HG. (2015). The effects of problem solving applications on the development of science process skills, logical-thinking skills and per-ception on problem solving ability in the sci-ence. Asia-pacific Forum on Science Learning and Teaching 16(2):1-31. Sezen, N., & Bülbül, A. (2011). A scale on logical thinking abilities. Procedia - Social and Behav-ioral Sciences, 15, 2476–2480. https://doi. org/10.1016/j.sbspro.2011.04.131 Stevens, M. (2012). How to be a better problem solver. United States: Kogan Page. Trans. by Heri Ahyudi. Jakarta: Media Komputindo. Sufairoh. (2016). Pendekatan Sanitifik & Model Pem-belajaran K-13. Jurnal Pendidikan Professional, 5(3), 116–125. Voogt, J., & Roblin, N. P. (2012). A comparative analy-sis of international frameworks for 21 century competences : Implications for national cur-riculum policies, (December), 37–41. 653 Henni Riyanti et al. / Biosaintifika 10 (3) (2018) 648-654 Wittrock, M. C. (2016). A Generative Model of Math-ematics Learning, 5(4), 181–196. Zulkarnain, I., & Rahmawati, A. (2014). Model Pem-belajaran Generatif untuk Mengembangkan Kemampuan Penalaran Matematis Siswa. Jur-nal Pendidikan Matematika, 2(1). 654 Download 225.81 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling