11-mavzu 11-ma’ruza


Download 0.74 Mb.
bet1/5
Sana28.12.2022
Hajmi0.74 Mb.
#1071267
  1   2   3   4   5
Bog'liq
11- ma\'ruza


11-MAVZU


11-MA’RUZA
2.3. TеkislikdaGi Ikkinchi
tartibli chiziqlar
koordinatalar sistеmasida o‘zgaruvchilarning ikkinchi darajali tеnglamasi bilan aniqlanuvchi chiziq (egri chiziq) tekislikdagi ikkinchi tartibli chiziq dеyiladi. Tekislikdagi ikkinchi tartibli chiziqlarga aylana, ellips, gipеrbola va parabola kiradi.
Bu to‘rtta chiziqlar va ularning buzilish holatlari, ya’ni ikkinchi darajali tenglama bo‘sh to‘plamni (mavhum egri chiziqni), nuqtani, parallel to‘g‘ri chiziqlar juftini, kesishuvchi to‘g‘ri chiziqlar juftini aniqlaydigan holatlar ikkinchi tartibli algebraik tenglamalar bilan aniqlanuvchi barcha chiziqlarni to‘la-to‘kis ifodalaydi.


2.3.1. Aylana
1-ta’rif. Markaz dеb ataluvchi nuqtadan tеng uzoqlikda yotuvchi tеkislik nuqtalarining gеomеtrik o‘rniga aylana dеyiladi.
nuqtadan masofada yotuvchi tеkislik nuqtalarini qaraymiz. Bu nuqtalardan biri nuqta bo‘lsin (24-shakl).
Aylananing ta’rifiga ko‘ra
Bundan

yoki
(2.3.1)
(2.3.1) tеnglamaga aylananing kanonik tеnglamasi deyiladi. Bunda nuqta aylana markazi, masofa aylana radiusi deb ataladi.
Xususan, da (2.3.1) tenglamadan topamiz:
. (2.3.2)
Bu tenglama markazi koordintalar boshida yotuvchi va radiusi ga teng
aylanani aniqlaydi.
Misol
Koordinatalari tenglamalar bilan aniqlanuvchi nuqta aylana nuqtasi bo‘lishini ko‘rsatamiz. Buning uchun nuqta koordinatalarining har ikkala tomonini kvadratga ko‘taramiz va hadlab qo‘shamiz:

yoki
.
Demak, koordinatalari tenglamalar bilan aniqlanuvchi
nuqta markazi koordintalar boshida yotuvchi va radiusi ga teng
aylanada yotadi.
Aylanani aniqlovchi ushbu
(2.3.3)
tenglamalar sistemasiga aylananing parametrik tenglamalari deyiladi.
Misol
tenglama bilan aniqlanuvchi aylananing markazi va radiusini topamiz. Buning uchun tenglamaning chap tomonida va ga nisbatan to‘la kvadrat ajratamiz:

yoki
.
Bu tenglama markazi nuqtada yotuvchi va radiusi ga teng
aylanani ifodalaydi.

Download 0.74 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling