+12a-19 ni ko`paytuvchilarga ajrating. + A) (a-1)
Download 0.81 Mb.
|
1-Guruh (1)
#1 a3+6a2+12a-19 ni ko`paytuvchilarga ajrating. + A) (a-1)(a2+7a+19) B)(a-1)(a2+6a+19) C) (a+1)(a2-7a-19) D) (a+1)(a2+7a-19) #2 x(x+a)(x+b)(x+a+b) +49m2 ifoda m ning qanday qiymatida to`la kvadrat bo`ladi? +A) B) C) D) #3 a2+ b2+c2 =ab+bc+ac tenglik o`rinli bo`lsa, ni to’ing. +A) 2 B) 1 C) 4 D) –2 #4 ni hisoblang. 1 B) 2 +C) 3 D) 4 #5 tengsizlikni yeching. +A) B) C) D) #6 sistemadan ni yo’qoting. +A) B) C) D) #7 = ? A) lnx+x+c B) +C) #8 =? A) +B) C) D) +1 #9 Yig’indini hisoblang . A) B) C) +D) #10 a2+ bo’lsa, a- nimaga teng. A) 3 B) -3 C) 2 +D) ±4 #11 76-27 soni quyidagilarning qaysi biriga qoldiqsiz bo’linadi? A) 51 B) 49 C) 45 D) + 23 #12 Hisoblang. (1- )·(1- )·….·(1- ) A) +B) C) D) #13 Tenglamani yeching. +A) 49, -49 B) 7 C) 39 D) 50 #14 Ushbu tengsizlikni qanoatlantiruvchi butun sonlar nechta? A) 3 B) 2 +C) 4 D) 1 #15 ni hisoblang. A) 0 B) +C) 1 D) hisoblab bo’lmaydi. #16 tenglamani yeching. A) B) +C) D) #17 Ushbu chiziqlar bilan chegaralangan figuraning yuzini hisoblang. A) +B) C) D) #18 Tenglamaning natural sonlardagi yechimida nimaga teng. +A) 3 B) 4 C) 1 D) 7 #19 Kvadrat shaklidagi tunukadan eni 3 ga teng bo’lgan qismi qirqib olindi. Agar qolgan qismining yuzi 10 ga teng bo’lsa, kvadratning tomonini aniqlang. A) 10 B) 9 C) 8 +D) 5 #20 Parallelogrammning diagonali 8 ga teng. SHu parallelogrammga ichki va tashqi aylanalar chizish mumkin bo’lsa, parallelogrammning yuzini toping. A) berilganlar yetarli emas B) 32 +C) 64 D) 128 #21 M ( , ) nuqtaning koordinatalari 2 , 5 = 0 tenglikni qanoatlantiradi. Agar α Vektor va OX o’qining musbat yo’nalishi orasidagi burchak bo’lsa, α ning qiymatini toping. A) +B) C) D) #22 Muntazam uchburchakli prizmaning hajmi 16 ga teng. Asosidagi tomonning uzunligi qanday bo’lganda, prizmaning to’la sirti eng kichik bo’ladi? A) 3 +B) 4 C) 2 D) 6 #23 Uzunligi ga teng bo’lgan AB kesmaning uchlari radiusi 6 ga, balandligi 9 ga teng tsilindrning pastki va yuqori asosidagi aylanalarda yotadi. Silindr markaziy o’qidan AB kesmagacha bo’lgan eng qisqa masofani toping. A) B) +C) D) #24 To’g’ri prizmaning hajmi 40 ga, unga ichki chizilgan sharning hajmi ga teng. Prizmaning yon sirtini toping. +A) 40 B) 16 C) 24 D) 20 #25 R radiusli yarim sharga asosining markazi bilan ustma – ust tushadigan konus tashqi chizilgan. Konusning balandligi qanday bo’lganda, uning hajmi eng kichik bo’ladi? +A) B) C) D) #26 Agar x haqiqiy musbat son bo’lib, bo’lsa, ning qiymatini toping A) 9 B) 5 C) 3 +D)14 #27 integralni hisoblang A) B) C) +D) #28 Agar bo’lsa, ning qiymatini toping A) 5 B) 25 C) 24 +D) 4 #29 integralni hisoblang A) +B) C) D) #30 Radiusi 10 ga teng yarim sharga asosining markazi bilan ustma-ust tushadigan konus tashqi chizilgan. Konusning balandligi qanday bo’lganda uning hajmi eng kichik bo’ladi. A) B) +C) D) 15 #31 To’g’ri to’rtburchakning ichidan olingan nuqtadan uning uchlarigacha masofalar ketma-ket 1; 5; 7 bo’lsa, to’rtinchi uchigacha bo’lgan masofani toping. A) 4 B) 3 +C) 5 D) 6 #32 aniq integralni hisoblang. A) 0 B) 1 C) +D) #33 To’g’ri silindrning asosi radiusi 4sm, balandligi 5sm. Yon sirtidan A va B nuqtalar olingan A va B nuqtalardan asos tekisligigacha masofalar mos ravishda 2sm va 3sm. Agar AB kesmaning uzunligi 5sm bo’lsa, silindr o’qidan AB kesmagacha masofani toping. A) B) +C) D) #1 100 dan oshmaydigan barcha natural sonlarni ketma – ket yozilsa, 0 raqami necha marta uchraydi? A) 9 B) 10 +C) 11 D) 12 #2 n ning qanday eng kichik natural qiymatida nx2+(2n-1)x+n-2=0 kvadrat tenglama ratsional ildizlarga ega? A) 1 +B) 2 C) 3 D) 4 #3 a ning qanday qiymatlarida x2-3ax+a2=0 tenglama ildizlari uchun x12+x22=112 tenglik bajariladi? +A) a=±4 B) a=±2 C) a=±8 D) a=±3. #4 sistema yagona yechimga ega bo`ladigan a ni to’ing. +A) a≠4; a≠-1 B) a≠-4; a≠-1 C) a≠2; a≠-1 D) a≠-3; a≠4 #4 Kinozaldagi tomoshabinlar ikki Eshikdan 6 minutda chiqib keta oladi. Agar birinchi Eshik ochilsa, faqat ikkinchi Eshikning o’zidan chiqarilganga qaraganda 5 minut kam vaqt ketadi. Faqat birinchi Eshikdan tomoshabinlar necha minutda chiqib keta oladilar? A) 6 B) 8 +C) 10 D) 12 #5 Arifmetik progressiya n ta hadining yig’indisi bo’lsa, progressiyaning ayirmasini toping. A) 5 B) 6 C) 7 +D) 8 #6 bo’lsa, ni aniqlang. A) B) C) 2x +D) x #7 ni soddalashtiring. A) B) C) 0 +D) 1 #8 tenglamani yeching. A) +B) C) 0,4 D) -0,4 #9 tenglamani yeching. A) , B) C) + D) , #9 tengsizlikni yeching. A) B) +C) D) #10 ni hisoblang. A) 27 B) 28 +C) 29 D) 30 #11 tenglama ildizi qaysi oraliqqa tegishli? A) B) +C) D) #12 funksiyaning eng kichik qiymatini to’ing. A) 8 C) 12 C) 14 +D) 16 #13 To’g’ri burchakli uchburchakning bir kateti ikkinchisidan 5 sm ga uzun, lekin gipotenuzadan 5 sm ga qisqa bo’lsa, gipotenuzani to’ing. A) 20sm +B) 25sm C) 15 sm D) 30sm #14 Soddalashtiring. (a ≥ 1), A) - 2 B) 2-1 +C) - 1 D) #15 tenglamaning ildizlari yig’indisini toping. +A) -6 B) 0 C) -5 D) 6 #16 ning qanday qiymatlarida tenglamaning yechimi bo’lmaydi? A) +B) C) D) #17 ning qanday qiymatlarida son o’qida tenglamaning ildizlari orasidagi masofa 1 ga teng bo’ladi? A) ± 5 B) ± 6 +C) ± 7 D) ± 8 #18 Tenglamalar sistemasini yeching: A) (2; 2) +B) (-2; -2) C) (-1; -1) D) (1; 1) #19 ning qanday qiymatida tenglamalar sistemasi yechimga ega? A) 0 B) 1 C) 2 +D) 3 #20 Tengsizlikning butun yechimlari nechta? 0 A) 5 B) 4 +C) 3 D) 2 #21 Agar va bo’lsa, ning qiymati qaysi kesmaga tegishli? A) B) C) +D) #22 tengsizlikning butun sonlardan iborat yechimlari dan eng kattasi va eng kichigining ko’paytmasini toping. A) 42 B) -117 +C) -140 D) 140 #23 Arifmetik progressiyasida va Shu progressiyaning dastlabki sakkizta hadining yig’indisini toping. A) 162 B) 170 C) 115 +D) 160 #24 Onasi 50, qizi 28 yoshda. Necha yil oldin qizi onasidan ikki marta yosh bo’lgan. A) 5 yil +B) 6 yil C) 8 yil D) 4 yil #25 Xodimning oylik maoshi ketma-ket ikki marta bir xil foizga oshirilgandan so’ng dastlabki maoshdan 69% ga oshgan bo’lsa, maosh har gall necha foizdan oshirilgan? +A) 30 B) 34,5 C) 40 D) 35 #26 parametrning qanday qiymatida 3 va 2 to’g’ri chiziqlarning kesishish nuqtasi birinchi koordinat choragining bissektrisasida yotadi? A) 0,6 B) -0,8 C) 0,4 +D -0,4 #27 ning qanday qiymatlarida funktsiyaning qiymatlari 2 dan kichik emas? +A B) C) D) #28 tenglamani yeching. +A 1 B) -1;1 C) 2 D) 3;4 #29 Tenglamaning ildizi 8 dan qanchaga kam? A) 7 +B) 9 C) 10 D) 6 #30 tenglamaning oraliqdagi yechimini toping. +A) 4 B) 2 C) 3 D) 5 #31 Tengsizliklar sistemasining eng katta va eng kichik yechimlari ayirmasini toping. A) B) C) +D) #32 Agar bo’lsa, tenglamaning eng kichik ildizini toping. A) – 6 B) C) – 2 +D) – 4 #33 Agar bo’lsa, ni hisoblang. A) -3 +B) 3 C) 2 D) -2 #34 Agar bo’lsa, ning eng kichik qiymatini toping. A) 30 B) 24 C) 6 +D) 18 #35 parabolaga uning biror nuqtasida o’tkazilgan urinmaning burchak koeffitsenti 4 ga teng. Shu urinmaning tenglamasini toping. A) B) C) +D) #36 Ushbu uchun boshlang’ich funktsiyani toping. A) B) C) +D) #37 2 funktsiyaning boshlang’ich funktsiyasini aniqlang. +A) B) C) D) #38 tenglamaning ildizlari yig’indisini toping. A) -5 B) -3 C) 6 +D) 3 #39 Uchburchakning teng tomonlari orasidagi burchagi ga teng. Uchburchakning uchinchi tomoni 12 ga teng bo’lsa hamda uning tomonlari shartni qanoatlantirsa, ning qiymatini toping. A) 12 B) 16 C) 16 +D 12 #40 To’g’ri burchakli uchburchak o’tkir burchagining bissektrisasi (qarma-qarshi) katetni uzunliklari 4 va 5 ga teng bo’lgan qismlarga ajratadi. SHu uchburchakning perimetrini toping. A) 32 B) 40 +C) 36 D) 45 #41 Uchburchakning ikki tomoni uzunliklari 6 va 3 ga teng. Agar bu tomonlarga o’tkazilgan balandliklar uzunliklari yig’indisining yarmi uchinchi tomonga o’tkazilgan balandlikka teng bo’lsa, uchinchi tomon uzunligini aniqlang. A) 6 B) 5 C) 3 +D) 4 #42 Rombning yuzi 16 ga, perimetri 12 ga teng. Uning diagonali yig’indisini toping. A) 8 B) 12 C) 11 +D) 10 #42 ABCD parallelogrammning A burchagi 300 ga teng. A burchakning bissektrisasi BC tomonni E nuqtada kesib o’tadi. Agar BE = 4 va EC = 2 bo’lsa, parallelogrammning yuzini toping. A) 10 B) 11 C) 9 +D) 12 #43 ABC trapetsiyaning asoslari A = 6 , BC = 3 ga , yuzi 30 ga teng. Uning yon tomonlari E nuqtada kesishguncha davom ettirilgan. BEC uchburchakning yuzini toping. A) 12 +B) 10 C) 8 D) 15 #44 aylananing abtsissa o’qidan ajratgan kesma uzunligini toping. A) B) 4 C) 2 +D) 3 #43 To’g’ri burchakli uchburchakka ichki chizilgan aylananing urinish nuqtasi gipotenuzani 7 va 3 ga teng kesmalarga ajratadi. Uchburchakning yuzini toping. +A) 21 B) 24 C) 18 D)42 #44 Doiraga ichki chizilgan uchburchakning bir tomoni uning diametriga teng. Doiraning yuzi 289 ga, uchburchak tomonlaridan birining uzunligi 30 ga teng. Shu uchburchakka ichki chizilgan doiraning yuzini toping. A) 16 +B) 36 C) 64 D) 25 #45 OZ o’qida shunday M nuqtani topingki, undan A (2; - 3; 1) nuqtagacha bo’lgan masofa 7 ga teng bo’lsin. +A) M1 (0; 0; 7) va M2 (0; 0; - 5) B) M(0; 0; 7) C) M(0; 0; - 5) D) M1(0; 0 – 2) va M2(0; 0; 6) #46 va nokollinear Vektorlar berilgan. 3 bo’lsa , ( ) bilan ( ) qanday burchak tashkil etadi? A) 300 B) 450 +B) 900 C) 600 #47 ABC muntazam uchburchakning AC tomoni orqali α tekislik o’tkazilgan. Uchburchakning BD balandligi tekislik bilan 300 li burchak tashkil qiladi. AB to’g’ri chiziq bilan α tekislik orasidagi burchak sinusi topilsin. A) +B) C) D) #48 Piramidaning asosi to’g’ri burchakli uchburchak bo’lib, uning gipotenuzasi uzunligi 10 ga teng. Piramidaning yon qirralari 13 ga teng bo’lsa, uning balandligini toping. A) 11 +B) 12 C) 10 D) 13 #49 Muntazam Kesik piramida ustki asosining yuzi ostki asosining yuzidan uch marta kam. Piramidaning barcha yon yoqlari ostki asosiga 600 burchak ostida og’ishgan . Piramida ostki asosining yuzi piramida yon sirtining necha foizini tashkil etadi? A) 60 B) 50 C) 40 +D) 75 #50 Silindrning yon sirti yoyilganda diagonali 12 ga teng bo’lgan to’g’ri to’rtburchakdan iborat bo’lib, bu diagonal asos tekisligi bilan li burchak tashkil etadi. SHu tsilindrning hajmini toping. A) B) 91π C) +D) #51 Konusning to’la sirti asosining yuzidan 3 marta katta bo’lsa, o’q kesimning uchidagi burchagini toping. +A) B) C) D) #52 Kesik konusga shar ichki chizilgan. Konusning ustki asosini yuzi 36π ga, ostki asosining yuzi esa 64π ga teng. SHar sirtining yuzini toping. A) 172π B) 100π C) 144π +C) 192π #53 Aylanaga ichki chizilgan muntazam oltiburchakning tomoni 20 ga teng. SHu aylanaga kvadrat ham ichki chizilgan. Kvadratga ichki chizilgan doiraning yuzini toping. A) B) C) +D) #4. Agar bo’lsa, quyidagilardan qaysi biriga teng A) +B) C) D) #5. Agar bo’lsa, ni orqali ifodalang. +A) B) C) D) #5. tenglamaning haqiqiy ildizlari nechta? A) 0 B)3 C) 1 +D) 2 #2. tengsizlikni yeching A) B) C) +D) #1. tenglamaning ildizlari yig’indisini toping A) B) +C) D) 5 #3. ifodani soddalashtiring A) B) C) 1 +D) 0 #11. ayniyat bo’lsa, ning qiymatini toping. +A) 4 B) 10 C) 6 D) 3 #10. funksiyaning nuqtadagi hosilasini toping. A) -39 +B) 41 C) -41 D) 39 #8. bo’lsa, ni toping A) B) +C) D) #1. Arifmetik progressiyada va bo’lsa, progressiyaning dastlabki 12 ta hadi yig’indisini toping. A) 168 B) 158 C) 174 +D) 162 #5. 3 ta merganning nishonga tekkizish ehtimoli mos ravishda 0,8; 0,6 va 0,7 ga teng bo’lsa, faqat birinchi va uchunchi merganlarning nishonga tekkizish ehtimolini toping. A) 0,336 B) 0,664 +C) 0,224 D) 0,776 #4. funksiyaning hosilasini toping. A) B) C) +D) #6. sonning 60%i 51 ga teng bo’lsa, ning qiymatini toping. A) 26 B) 27 +C) 28 D) 29 #7. nuqtadan o’tuvchi va vektorga perpendikulyar bo’lgan to’g’ri chiziq tenglamasini tuzing. A) +B) C) D) #8. ABC uchburchakning tamonlari uzunliklari AB=5, BC=4 va CA=4 bo’lsa, skalyar ko’paytmani hisoblang. +A) 12,5 B) 2,5 C) 25 D) 12 #9. va nuqtalardan o’tuvchi hamda markazi to’g’ri chiziqda yotgan aylana tenglamasini toping. +A) B) C) D) #3. Ushbu shaklda nechta uchburchak bor. A) 12 +B) 18 C) 24 D) 30 #12. Teng yonli ucburchakning asosi 8 ga va yon tamoniga tushirilgan medianasi 10 ga teng bo’lsa, yon tamonini toping. A) B) +C) D) 16 #14. . Quyidagi shaklda nechta to’g’ri burchakli bo’lmagan uchburchak bor. +A) 15 B) 18 C) 21 D) 24 #16. Prizmaning asosi tamonlari 5 va 6 bo’lgan hamda o’tkir burchagi bo’lgan parallelogramdan iborat. Agar prizmaning yon qirrasi 4 ga teng va u asos bilan burchak tashkil qilsa, pirizma hajmini toping. +A) B) C) D) #12. Hisoblang A) 2,15 B) 2,25 C) 2,3 +D) 2,1 #11. Arifmetik progressiyada va o’rinli bo’lsa, progressiyaning ayirmasi va birinchi hadi ayirmasining modulini toping. A) 5 B) 7 +C) 9 D) 11 #14. sonlar uchun tenglik o’rinli bo’lsa, ning eng katta qiymatini toping. A) 32 +B) 30 C) 28 D) 26 #16. 6 – darajali funksiya bo’lsa, ni nuqtadagi hosilasini toping. A) 6 +B) 4 C) 8 D) 16 # tenglamaning barcha ildizlari yig’indisini toping. A) -6 B) 2 C) -2 +D) -3 #15. Agar bo’lsa, ning qiymatini toping. +A) 5 B) 6 C) 4 D) 7 #14. Chizmada funksiyaning grafigi tasvirlangan.Chizmaga ko’ra qaysi biri o’rinli? A) +B) C) D) #11. tenglamani yeching. A) B) +C) D) #12. tengsizlikning butun yechimlari yig’indisini toping. A) 12 B) 28 +C) 24 D) 21 #3. integralni hisoblang A) +B) C) D) #2. tenglamani yeching A) 2 B) -15 C) -16 +D) 6 #10. Markazi nuqtada bo’lgan aylanadagi nuqtani soat mili harakati yo’nalishida aylana bo’ylab ga burish natijasida hosil bo’lgan nuqtani koordinatalarini toping. A) B) +C) D) #11. Qutida T, A, O, N harflar bor. Tavakkaliga olingan 3 taharf ketma – ket qo’yilganda “ONA” so’zi hosil bo’lish ehtimolini toping. A) B) C) D) #9. Tengsizlikni yeching A) +B) C) D) #7. sonining butun qismini toping. A) -12 B) -11 +C) -13 D) -25 #3. ifodani hisoblang va standart ko’rinishga keltiring. A) B) +C) D) #3. Tengsizlikni yeching: A) B) +C) D) #6. Arifmetik progressiyada dastlabki 4 ta hadi yig’indisi 244 ga teng. Agar va bo’lsa nni toping. A) 8 B) 9 C) 10 +D) 11 #5. Teng yonli uchburchakning asosi a ga va yon tamoni b gat eng bo’lsa, uchidagi burchagining kotangensini toping. A) B) +C) D) #2. Prizmaning asosi tamonlari 5 va 6 bo’lgan hamda o’tkir burchagi bo’lgan parallelogramdan iborat. Agar prizmaning yon qirrasi 12 ga teng va u asos bilan burchak tashkil qilsa, pirizma hajmini toping. A) +B) C) D) #10. Bir burchagi bo’lgan to’g’ri burchakli uchburchakka tomoni agat eng bo’lgan romb shunday ichki chizilganki, li burchak ular uchun umumiy, rombning qolgan uchlari uchburchak tamonlarida yotadi. Uchburchakning tamonlarini toping. +A) B) C) D) #4. radiusli aylanaga trapetsiya ichki chizilgan. Trapetsiyaning pastki asosi qolgan tamonlaridan ikki marta katta. Trapetsiyani yuzini toping. A) +B) C) D) #7. Uchta tengdosh prizmaning balandliklari nisbati mos ravishda 4:9:12 kabi nisbatda bo’lsa, prizmaning asosini yuzlarini nisbatini toping. A) 12:9:4 +B) 9:4:3 C) 16:81:144 D) 8:18:24 #6. To’g’ri konusning balandligi 10 ga, asosining radiusi 6 ga teng va asosining markazidan yasovchisiga eng qisqa masofadagi nuqtalardan asosiga parallel tekislik o’tkazildi. Hosil bo’lgan kesik konusning kichik asosini radiusini toping. A) +B) C) D) #5. Parallelogramning o’tmas burchagi ga, tamonlari 12 va 18 ga teng bo’lsa, burchaklari bissektrisalari kesishishidan hosil bo’lgan to’g’ri to’rtburchakni yuzini toping. A) 12 +B) 9 C) 8 D) 10 Download 0.81 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling