+12a-19 ni ko`paytuvchilarga ajrating. + A) (a-1)


Download 0.81 Mb.
Sana16.03.2023
Hajmi0.81 Mb.
#1278867
Bog'liq
1-Guruh (1)


#1 a3+6a2+12a-19 ni ko`paytuvchilarga ajrating.
+ A) (a-1)(a2+7a+19) B)(a-1)(a2+6a+19)
C) (a+1)(a2-7a-19) D) (a+1)(a2+7a-19)
#2 x(x+a)(x+b)(x+a+b) +49m2 ifoda m ning qanday qiymatida to`la kvadrat bo`ladi?
+A) B) C) D)
#3 a2+ b2+c2 =ab+bc+ac tenglik o`rinli bo`lsa, ni to’ing.
+A) 2 B) 1 C) 4 D) –2
#4 ni hisoblang.

  1. 1 B) 2 +C) 3 D) 4

#5 tengsizlikni yeching.
+A) B) C) D)
#6 sistemadan ni yo’qoting.
+A) B)
C) D)
#7 = ?
A) lnx+x+c B) +C)
#8 =?
A) +B) C) D) +1
#9 Yig’indini hisoblang .
A) B) C) +D)
#10 a2+ bo’lsa, a- nimaga teng.
A) 3 B) -3 C) 2 +D) ±4
#11 76-27 soni quyidagilarning qaysi biriga qoldiqsiz bo’linadi?
A) 51 B) 49 C) 45 D) + 23
#12 Hisoblang. (1- )·(1- )·….·(1- )
A) +B) C) D)
#13 Tenglamani yeching.
+A) 49, -49 B) 7 C) 39 D) 50
#14 Ushbu tengsizlikni qanoatlantiruvchi butun sonlar nechta?
A) 3 B) 2 +C) 4 D) 1
#15 ni hisoblang.
A) 0 B) +C) 1 D) hisoblab bo’lmaydi.
#16 tenglamani yeching.
A) B) +C) D)
#17 Ushbu chiziqlar bilan chegaralangan figuraning yuzini hisoblang.
A) +B) C) D)
#18 Tenglamaning natural sonlardagi yechimida nimaga teng.
+A) 3 B) 4 C) 1 D) 7
#19 Kvadrat shaklidagi tunukadan eni 3 ga teng bo’lgan qismi qirqib olindi. Agar qolgan qismining yuzi 10 ga teng bo’lsa, kvadratning tomonini aniqlang.
A) 10 B) 9 C) 8 +D) 5
#20 Parallelogrammning diagonali 8 ga teng. SHu parallelogrammga ichki va tashqi aylanalar chizish mumkin bo’lsa, parallelogrammning yuzini toping.
A) berilganlar yetarli emas B) 32
+C) 64 D) 128
#21 M ( , ) nuqtaning koordinatalari 2 , 5 = 0 tenglikni qanoatlantiradi. Agar α Vektor va OX o’qining musbat yo’nalishi orasidagi burchak bo’lsa, α ning qiymatini toping.
A) +B) C) D)
#22 Muntazam uchburchakli prizmaning hajmi 16 ga teng. Asosidagi tomonning uzunligi qanday bo’lganda, prizmaning to’la sirti eng kichik bo’ladi?
A) 3 +B) 4 C) 2 D) 6
#23 Uzunligi ga teng bo’lgan AB kesmaning uchlari radiusi 6 ga, balandligi 9 ga teng tsilindrning pastki va yuqori asosidagi aylanalarda yotadi. Silindr markaziy o’qidan AB kesmagacha bo’lgan eng qisqa masofani toping.
A) B) +C) D)
#24 To’g’ri prizmaning hajmi 40 ga, unga ichki chizilgan sharning hajmi ga teng. Prizmaning yon sirtini toping.
+A) 40 B) 16 C) 24 D) 20
#25 R radiusli yarim sharga asosining markazi bilan ustma – ust tushadigan konus tashqi chizilgan. Konusning balandligi qanday bo’lganda, uning hajmi eng kichik bo’ladi?
+A) B) C) D)
#26 Agar x haqiqiy musbat son bo’lib, bo’lsa, ning qiymatini toping
A) 9 B) 5 C) 3 +D)14
#27 integralni hisoblang
A) B)
C) +D)
#28 Agar bo’lsa, ning qiymatini toping
A) 5 B) 25 C) 24 +D) 4
#29 integralni hisoblang
A) +B)
C) D)
#30 Radiusi 10 ga teng yarim sharga asosining markazi bilan ustma-ust tushadigan konus tashqi chizilgan. Konusning balandligi qanday bo’lganda uning hajmi eng kichik bo’ladi.
A) B) +C) D) 15
#31 To’g’ri to’rtburchakning ichidan olingan nuqtadan uning uchlarigacha masofalar ketma-ket 1; 5; 7 bo’lsa, to’rtinchi uchigacha bo’lgan masofani toping.
A) 4 B) 3 +C) 5 D) 6
#32 aniq integralni hisoblang.
A) 0 B) 1 C) +D)
#33 To’g’ri silindrning asosi radiusi 4sm, balandligi 5sm. Yon sirtidan A va B nuqtalar olingan A va B nuqtalardan asos tekisligigacha masofalar mos ravishda 2sm va 3sm. Agar AB kesmaning uzunligi 5sm bo’lsa, silindr o’qidan AB kesmagacha masofani toping.
A) B) +C) D)
#1 100 dan oshmaydigan barcha natural sonlarni ketma – ket yozilsa, 0 raqami necha marta uchraydi?
A) 9 B) 10 +C) 11 D) 12
#2 n ning qanday eng kichik natural qiymatida nx2+(2n-1)x+n-2=0 kvadrat tenglama ratsional ildizlarga ega?
A) 1 +B) 2 C) 3 D) 4
#3 a ning qanday qiymatlarida x2-3ax+a2=0 tenglama ildizlari uchun x12+x22=112 tenglik bajariladi?
+A) a=±4 B) a=±2 C) a=±8 D) a=±3.
#4 sistema yagona yechimga ega bo`ladigan a ni to’ing.
+A) a≠4; a≠-1 B) a≠-4; a≠-1 C) a≠2; a≠-1
D) a≠-3; a≠4
#4 Kinozaldagi tomoshabinlar ikki Eshikdan 6 minutda chiqib keta oladi. Agar birinchi Eshik ochilsa, faqat ikkinchi Eshikning o’zidan chiqarilganga qaraganda 5 minut kam vaqt ketadi. Faqat birinchi Eshikdan tomoshabinlar necha minutda chiqib keta oladilar?
A) 6 B) 8 +C) 10 D) 12
#5 Arifmetik progressiya n ta hadining yig’indisi bo’lsa, progressiyaning ayirmasini toping.
A) 5 B) 6 C) 7 +D) 8
#6 bo’lsa, ni aniqlang.
A) B) C) 2x +D) x
#7 ni soddalashtiring.
A) B) C) 0 +D) 1
#8 tenglamani yeching.
A) +B) C) 0,4 D) -0,4
#9 tenglamani yeching.
A) ,
B)
C)
+ D) ,
#9 tengsizlikni yeching.
A)
B)
+C)
D)
#10 ni hisoblang.
A) 27 B) 28 +C) 29 D) 30
#11 tenglama ildizi qaysi oraliqqa tegishli?
A) B) +C) D)
#12 funksiyaning eng kichik qiymatini to’ing.
A) 8 C) 12 C) 14 +D) 16
#13 To’g’ri burchakli uchburchakning bir kateti ikkinchisidan 5 sm ga uzun, lekin gipotenuzadan 5 sm ga qisqa bo’lsa, gipotenuzani to’ing.
A) 20sm +B) 25sm C) 15 sm D) 30sm
#14 Soddalashtiring. (a ≥ 1),
A) - 2 B) 2-1 +C) - 1 D)
#15 tenglamaning ildizlari yig’indisini toping.
+A) -6 B) 0 C) -5 D) 6
#16 ning qanday qiymatlarida tenglamaning yechimi bo’lmaydi?
A) +B) C) D)
#17 ning qanday qiymatlarida son o’qida tenglamaning ildizlari orasidagi masofa 1 ga teng bo’ladi?
A) ± 5 B) ± 6 +C) ± 7 D) ± 8
#18 Tenglamalar sistemasini yeching:

A) (2; 2) +B) (-2; -2) C) (-1; -1) D) (1; 1)
#19 ning qanday qiymatida tenglamalar sistemasi yechimga ega?
A) 0 B) 1 C) 2 +D) 3
#20 Tengsizlikning butun yechimlari nechta?
0
A) 5 B) 4 +C) 3 D) 2
#21 Agar va bo’lsa, ning qiymati qaysi kesmaga tegishli?
A) B) C) +D)
#22 tengsizlikning butun sonlardan iborat yechimlari dan eng kattasi va eng kichigining ko’paytmasini toping.
A) 42 B) -117 +C) -140 D) 140
#23 Arifmetik progressiyasida va Shu progressiyaning dastlabki sakkizta hadining yig’indisini toping.
A) 162 B) 170 C) 115 +D) 160
#24 Onasi 50, qizi 28 yoshda. Necha yil oldin qizi onasidan ikki marta yosh bo’lgan.
A) 5 yil +B) 6 yil C) 8 yil D) 4 yil
#25 Xodimning oylik maoshi ketma-ket ikki marta bir xil foizga oshirilgandan so’ng dastlabki maoshdan 69% ga oshgan bo’lsa, maosh har gall necha foizdan oshirilgan?
+A) 30 B) 34,5 C) 40 D) 35
#26 parametrning qanday qiymatida 3 va 2 to’g’ri chiziqlarning kesishish nuqtasi birinchi koordinat choragining bissektrisasida yotadi?
A) 0,6 B) -0,8 C) 0,4 +D -0,4
#27 ning qanday qiymatlarida funktsiyaning qiymatlari 2 dan kichik emas?
+A B)
C) D)
#28 tenglamani yeching.
+A 1 B) -1;1 C) 2 D) 3;4
#29 Tenglamaning ildizi 8 dan qanchaga kam?
A) 7 +B) 9 C) 10 D) 6
#30 tenglamaning oraliqdagi yechimini toping.
+A) 4 B) 2 C) 3 D) 5
#31 Tengsizliklar sistemasining eng katta va eng kichik yechimlari ayirmasini toping.
A) B) C) +D)
#32 Agar bo’lsa, tenglamaning eng kichik ildizini toping.
A) – 6 B) C) – 2 +D) – 4
#33 Agar bo’lsa, ni hisoblang.
A) -3 +B) 3 C) 2 D) -2
#34 Agar  bo’lsa, ning eng kichik qiymatini toping.
A) 30 B) 24 C) 6 +D) 18
#35 parabolaga uning biror nuqtasida o’tkazilgan urinmaning burchak koeffitsenti 4 ga teng. Shu urinmaning tenglamasini toping.
A) B)
C) +D)
#36 Ushbu uchun boshlang’ich funktsiyani toping.
A) B)
C) +D)
#37 2 funktsiyaning boshlang’ich funktsiyasini aniqlang.
+A)
B)
C)
D)
#38 tenglamaning ildizlari yig’indisini toping.
A) -5 B) -3 C) 6 +D) 3
#39 Uchburchakning teng tomonlari orasidagi burchagi ga teng. Uchburchakning uchinchi tomoni 12 ga teng bo’lsa hamda uning tomonlari shartni qanoatlantirsa, ning qiymatini toping.
A) 12 B) 16 C) 16 +D 12
#40 To’g’ri burchakli uchburchak o’tkir burchagining bissektrisasi (qarma-qarshi) katetni uzunliklari 4 va 5 ga teng bo’lgan qismlarga ajratadi. SHu uchburchakning perimetrini toping.
A) 32 B) 40 +C) 36 D) 45
#41 Uchburchakning ikki tomoni uzunliklari 6 va 3 ga teng. Agar bu tomonlarga o’tkazilgan balandliklar uzunliklari yig’indisining yarmi uchinchi tomonga o’tkazilgan balandlikka teng bo’lsa, uchinchi tomon uzunligini aniqlang.
A) 6 B) 5 C) 3 +D) 4
#42 Rombning yuzi 16 ga, perimetri 12 ga teng. Uning diagonali yig’indisini toping.
A) 8 B) 12 C) 11 +D) 10
#42 ABCD parallelogrammning A burchagi 300 ga teng. A burchakning bissektrisasi BC tomonni E nuqtada kesib o’tadi. Agar BE = 4 va EC = 2 bo’lsa, parallelogrammning yuzini toping.
A) 10 B) 11 C) 9 +D) 12
#43 ABC trapetsiyaning asoslari A = 6 , BC = 3 ga , yuzi 30 ga teng. Uning yon tomonlari E nuqtada kesishguncha davom ettirilgan. BEC uchburchakning yuzini toping.
A) 12 +B) 10 C) 8 D) 15
#44 aylananing abtsissa o’qidan ajratgan kesma uzunligini toping.
A) B) 4 C) 2 +D) 3
#43 To’g’ri burchakli uchburchakka ichki chizilgan aylananing urinish nuqtasi gipotenuzani 7 va 3 ga teng kesmalarga ajratadi. Uchburchakning yuzini toping.
+A) 21 B) 24 C) 18 D)42
#44 Doiraga ichki chizilgan uchburchakning bir tomoni uning diametriga teng. Doiraning yuzi 289 ga, uchburchak tomonlaridan birining uzunligi 30 ga teng. Shu uchburchakka ichki chizilgan doiraning yuzini toping.
A) 16 +B) 36 C) 64 D) 25
#45 OZ o’qida shunday M nuqtani topingki, undan A (2; - 3; 1) nuqtagacha bo’lgan masofa 7 ga teng bo’lsin.
+A) M1 (0; 0; 7) va M2 (0; 0; - 5)
B) M(0; 0; 7) C) M(0; 0; - 5)
D) M1(0; 0 – 2) va M2(0; 0; 6)
#46 va nokollinear Vektorlar berilgan. 3 bo’lsa , ( ) bilan ( ) qanday burchak tashkil etadi?
A) 300 B) 450 +B) 900 C) 600
#47 ABC muntazam uchburchakning AC tomoni orqali α tekislik o’tkazilgan. Uchburchakning BD balandligi tekislik bilan 300 li burchak tashkil qiladi. AB to’g’ri chiziq bilan α tekislik orasidagi burchak sinusi topilsin.
A) +B) C) D)
#48 Piramidaning asosi to’g’ri burchakli uchburchak bo’lib, uning gipotenuzasi uzunligi 10 ga teng. Piramidaning yon qirralari 13 ga teng bo’lsa, uning balandligini toping.
A) 11 +B) 12 C) 10 D) 13
#49 Muntazam Kesik piramida ustki asosining yuzi ostki asosining yuzidan uch marta kam. Piramidaning barcha yon yoqlari ostki asosiga 600 burchak ostida og’ishgan . Piramida ostki asosining yuzi piramida yon sirtining necha foizini tashkil etadi?
A) 60 B) 50 C) 40 +D) 75
#50 Silindrning yon sirti yoyilganda diagonali 12 ga teng bo’lgan to’g’ri to’rtburchakdan iborat bo’lib, bu diagonal asos tekisligi bilan li burchak tashkil etadi. SHu tsilindrning hajmini toping.
A) B) 91π C) +D)
#51 Konusning to’la sirti asosining yuzidan 3 marta katta bo’lsa, o’q kesimning uchidagi burchagini toping.
+A) B) C) D)
#52 Kesik konusga shar ichki chizilgan. Konusning ustki asosini yuzi 36π ga, ostki asosining yuzi esa 64π ga teng. SHar sirtining yuzini toping.
A) 172π B) 100π C) 144π +C) 192π
#53 Aylanaga ichki chizilgan muntazam oltiburchakning tomoni 20 ga teng. SHu aylanaga kvadrat ham ichki chizilgan. Kvadratga ichki chizilgan doiraning yuzini toping.
A) B) C) +D)
#4. Agar bo’lsa, quyidagilardan qaysi biriga teng
A) +B)
C) D)
#5. Agar bo’lsa, ni orqali ifodalang.
+A) B) C) D)
#5. tenglamaning haqiqiy ildizlari nechta?
A) 0 B)3 C) 1 +D) 2
#2. tengsizlikni yeching
A) B)
C) +D)
#1. tenglamaning ildizlari yig’indisini toping
A) B) +C)
D) 5
#3. ifodani soddalashtiring
A) B)
C) 1 +D) 0
#11. ayniyat bo’lsa, ning qiymatini toping.
+A) 4 B) 10 C) 6 D) 3
#10. funksiyaning nuqtadagi hosilasini toping.
A) -39 +B) 41 C) -41 D) 39
#8. bo’lsa, ni toping
A) B)
+C) D)
#1. Arifmetik progressiyada va bo’lsa, progressiyaning dastlabki 12 ta hadi yig’indisini toping.
A) 168 B) 158 C) 174 +D) 162
#5. 3 ta merganning nishonga tekkizish ehtimoli mos ravishda 0,8; 0,6 va 0,7 ga teng bo’lsa, faqat birinchi va uchunchi merganlarning nishonga tekkizish ehtimolini toping.
A) 0,336 B) 0,664 +C) 0,224 D) 0,776
#4. funksiyaning hosilasini toping.
A) B)
C) +D)
#6. sonning 60%i 51 ga teng bo’lsa, ning qiymatini toping.
A) 26 B) 27 +C) 28 D) 29
#7. nuqtadan o’tuvchi va vektorga perpendikulyar bo’lgan to’g’ri chiziq tenglamasini tuzing.
A) +B)
C) D)
#8. ABC uchburchakning tamonlari uzunliklari AB=5, BC=4 va CA=4 bo’lsa, skalyar ko’paytmani hisoblang.
+A) 12,5 B) 2,5 C) 25 D) 12
#9. va nuqtalardan o’tuvchi hamda markazi to’g’ri chiziqda yotgan aylana tenglamasini toping.
+A) B)
C) D)
#3. Ushbu shaklda nechta uchburchak bor.
A) 12 +B) 18 C) 24 D) 30
#12. Teng yonli ucburchakning asosi 8 ga va yon tamoniga tushirilgan medianasi 10 ga teng bo’lsa, yon tamonini toping.
A) B) +C) D) 16
#14. . Quyidagi shaklda nechta to’g’ri burchakli bo’lmagan uchburchak bor.
+A) 15 B) 18 C) 21 D) 24
#16. Prizmaning asosi tamonlari 5 va 6 bo’lgan hamda o’tkir burchagi bo’lgan parallelogramdan iborat. Agar prizmaning yon qirrasi 4 ga teng va u asos bilan burchak tashkil qilsa, pirizma hajmini toping.
+A) B) C) D)
#12. Hisoblang
A) 2,15 B) 2,25 C) 2,3 +D) 2,1
#11. Arifmetik progressiyada va o’rinli bo’lsa, progressiyaning ayirmasi va birinchi hadi ayirmasining modulini toping.
A) 5 B) 7 +C) 9 D) 11
#14. sonlar uchun tenglik o’rinli bo’lsa, ning eng katta qiymatini toping.
A) 32 +B) 30 C) 28 D) 26
#16. 6 – darajali funksiya bo’lsa, ni nuqtadagi hosilasini toping.
A) 6 +B) 4 C) 8 D) 16
# tenglamaning barcha ildizlari yig’indisini toping.
A) -6 B) 2 C) -2 +D) -3
#15. Agar bo’lsa, ning qiymatini toping.
+A) 5 B) 6 C) 4 D) 7
#14. Chizmada funksiyaning grafigi tasvirlangan.Chizmaga ko’ra qaysi biri o’rinli?

A) +B)
C) D)
#11. tenglamani yeching.
A)
B)
+C)
D)
#12. tengsizlikning butun yechimlari yig’indisini toping.
A) 12 B) 28 +C) 24 D) 21
#3. integralni hisoblang
A) +B)
C) D)
#2. tenglamani yeching
A) 2 B) -15 C) -16 +D) 6
#10. Markazi nuqtada bo’lgan aylanadagi nuqtani soat mili harakati yo’nalishida aylana bo’ylab ga burish natijasida hosil bo’lgan nuqtani koordinatalarini toping.
A) B)
+C) D)
#11. Qutida T, A, O, N harflar bor. Tavakkaliga olingan 3 taharf ketma – ket qo’yilganda “ONA” so’zi hosil bo’lish ehtimolini toping.
A) B) C) D)
#9. Tengsizlikni yeching
A) +B)
C) D)
#7. sonining butun qismini toping.
A) -12 B) -11 +C) -13 D) -25
#3. ifodani hisoblang va standart ko’rinishga keltiring.
A) B)
+C) D)
#3. Tengsizlikni yeching:
A) B)
+C) D)
#6. Arifmetik progressiyada dastlabki 4 ta hadi yig’indisi 244 ga teng. Agar va bo’lsa nni toping.
A) 8 B) 9 C) 10 +D) 11
#5. Teng yonli uchburchakning asosi a ga va yon tamoni b gat eng bo’lsa, uchidagi burchagining kotangensini toping.
A) B)
+C) D)
#2. Prizmaning asosi tamonlari 5 va 6 bo’lgan hamda o’tkir burchagi bo’lgan parallelogramdan iborat. Agar prizmaning yon qirrasi 12 ga teng va u asos bilan burchak tashkil qilsa, pirizma hajmini toping.
A) +B) C) D)
#10. Bir burchagi bo’lgan to’g’ri burchakli uchburchakka tomoni agat eng bo’lgan romb shunday ichki chizilganki, li burchak ular uchun umumiy, rombning qolgan uchlari uchburchak tamonlarida yotadi. Uchburchakning tamonlarini toping.
+A) B)
C) D)
#4. radiusli aylanaga trapetsiya ichki chizilgan. Trapetsiyaning pastki asosi qolgan tamonlaridan ikki marta katta. Trapetsiyani yuzini toping.
A) +B)
C) D)
#7. Uchta tengdosh prizmaning balandliklari nisbati mos ravishda 4:9:12 kabi nisbatda bo’lsa, prizmaning asosini yuzlarini nisbatini toping.
A) 12:9:4 +B) 9:4:3 C) 16:81:144 D) 8:18:24
#6. To’g’ri konusning balandligi 10 ga, asosining radiusi 6 ga teng va asosining markazidan yasovchisiga eng qisqa masofadagi nuqtalardan asosiga parallel tekislik o’tkazildi. Hosil bo’lgan kesik konusning kichik asosini radiusini toping.
A) +B) C) D)
#5. Parallelogramning o’tmas burchagi ga, tamonlari 12 va 18 ga teng bo’lsa, burchaklari bissektrisalari kesishishidan hosil bo’lgan to’g’ri to’rtburchakni yuzini toping.
A) 12 +B) 9 C) 8 D) 10

Download 0.81 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling