18. Oral colon cancer targeting by chitosan nanocomposites
Conclusion and future prospects
Download 215.78 Kb.
|
bose2018
- Bu sahifa navigatsiya:
- References
Conclusion and future prospectsChitosan nanocomposite, in the form of nanoparticles, has attracted increasing attention for oral colon cancer targeting due to good biocompatibility, biodegrad- ability, nontoxicity, and anticancer activity. Specifically, these nanoparticles enable increased drug efficacy through promoting drug absorption and bioavailability. Nonetheless, most studies have been conducted in vitro with cell culture system. The in vivo evaluation of nanoparticulate system as oral colon cancer targeting vehicle is still lacking. The appropriateness of chitosan nanocomposite nanoparti- cles as cancer therapeutics carrier for colon cancer treatment requires further tests in vivo. References— Y. Ionov, M.A. Peinado, S. Malkhosyan, D. Shibata, M. Perucho, Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogen- esis, Nature 363 (6429) (1993) 558 561. S. Chakravarthi, B. Krishnan, M. Madhavan, Apoptosis and expression of p53 in colo- rectal neoplasms, Indian J. Med. Res. 86 (7) (1999) 95—102. — F.J.A. Khalek, G.I. Gallicano, L. Mishra, Colon cancer stem cells, Gastrointest. Cancer Res. (2010) S16 S23. — S.D. Markowitz, M.M. Bertagnolli, Molecular origins of cancer, molecular basis of colo- rectal cancer, N. Engl. J. Med. 361 (25) (2009) 2449 2460. — B. Vogelstein, K.W. Kinzler, Cancer genes and the pathways they control, Nat. Med. 10 (8) (2004) 789 799. — G. Xing, W. Xiao-Fan, Signaling cross-talk between TGF-β/BMP and other pathways, Cell Res. 19 (2009) 71 88. A.A. Sunil, N.M. Nadagouda, M. Tejraj, Recent advances on chitosan-based micro- and nanoparticles in drug delivery, J. Control. Release 100 (2004) 5—28. Z. Khan, V. Pillay, Y.E. Choonara, L.C. du Toit, Drug delivery technologies for chron- otherapeutic applications, Pharm. Dev. Technol. 14 (2009) 602—612. 426 Applications of Nanocomposite Materials in Drug Delivery — K.S. Nam, M.K. Kim, Y.H. Shon, Chemopreventive effect of chitosan oligosaccharide against colon carcinogenesis, J. Microbiol. Biotechnol. 17 (2007) 1546 1549. — G. Kolios, Z. Brown, R.L. Robson, D.A. Robertson, J. Westwick, Inducible nitric oxide synthase activity and expression in a human colonic epithelial cell line, HT-29, Br. J. Pharmacol. 116 (7) (1995) 2866 2872. — K.S. Nam, M.K. Kim, Y.H. Shon, Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide, J. Microbiol. Biotechnol. 17 (2007) 2042 2045. — H. Quan, F. Zhu, X. Han, Z. Xu, Y. Zhao, Z. Miao, Mechanism of anti-angiogenic activities of chitooligosaccharides may be through inhibiting heparanase activity, Med. Hypotheses 73 (2009) 205 206. — K.S. Nam, Y.H. Shon, Suppression of metastasis of human breast cancer cells by chito- san oligosaccharides, J. Microbiol. Biotechnol. 19 (2009) 629 633. — C.S. Kong, Y.E. Bahn, B.K. Kim, K.Y. Lee, K.Y. Park, Antiproliferative effect of chitosan-added kimchi in HT-29 human colon carcinoma cells, J. Med. Food 13 (1) (2010) 6 12. S.Y. Lin, H.Y. Chan, F.H. Shen, M.H. Chen, Y.J. Wang, C.K. Yu, Chitosan prevents the development of AOM-induced aberrant crypt foci in mice and suppressed the prolif- eration of AGS cells by inhibiting DNA synthesis, J. Cell. Biochem. 100 (6) (2007) 1573—1580. — Q.X. Wu, D.Q. Lin, S.J. Yao, Design of chitosan and its water soluble derivatives- based drug carriers with polyelectrolyte complexes, Mar. Drugs. 12 (12) (2014) 6236 6253. — C.A. Schu¨tz, L. Juillerat Jeanneret, P. Ka¨uper, C. Wandrey, Cell response to the expo- sure to chitosan-TPP//alginate nanogels, Biomacromolecules 12 (11) (2011) 4153 4161. — L.H. Chuah, N. Billa, C.J. Roberts, J.C. Burley, S. Manickam, Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon, Pharm. Dev. Technol. 18 (3) (2013) 591 599. — P. Sanpui, A. Chattopadhyay, S.S. Ghosh, Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier, ACS Appl. Mater. Interfaces 3 (2) (2011) 218 228. — L.H. Chuah, C.J. Roberts, N. Billa, S. Abdullah, R. Rosli, Cellular uptake and antican- cer effects of mucoadhesive curcumin-containing chitosan nanoparticles, Colloids Surf. B Biointerfaces 116 (2014) 228 236. — H. Hosseinzadeh, F. Atyabi, R. Dinarvand, S.N. Ostad, Chitosan-pluronic nanoparticles as oral delivery of anticancer gemcitabine, preparation and in vitro study, Int. J. Nanomed. 7 (2012) 1851 1863. — N.M. Zaki, Augmented cytotoxicity of hydroxycamptothecin-loaded nanoparticles in lung and colon cancer cells by chemosensitizing pharmaceutical excipients, Drug Deliv. 21 (4) (2014) 265 275. — A.E. Yassin, I.A. Alsarra, F.K. Alanazi, A.M. Al Mohizea, A.A. Al Robayan, O.A. Al Obeed, New targeted-colon delivery system, in vitro and in vivo evaluation using X-ray imaging, J. Drug Target. 18 (1) (2010) 59 66. K. Roy, R.K. Kanwar, S. Krishnakumar, C.H. Cheung, J.R. Kanwar, Competitive inhi- bition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model, Int. J. Nanomed. 10 (2015) 1019—1043. S. Jauhari, A.K. Dash, A mucoadhesive in situ gel delivery system for paclitaxel, AAPS PharmSciTech. 7 (2) (2006) E53. Oral colon cancer targeting by chitosan nanocomposites 427 — S. Haupt, T. Zioni, I. Gati, J. Kleinstern, A. Rubinstein, Luminal delivery and dosing considerations of local celecoxib administration to colorectal cancer, Eur. J. Pharm. Sci. 28 (3) (2006) 204 211. — J.R. Kanwar, G. Mahidhara, R.K. Kanwar, Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy, Nanomedicines 7 (10) (2012) 521 550. — S.J. Yang, M.J. Shieh, F.H. Lin, P.J. Lou, C.L. Peng, M.F. Wei, et al., Colorectal can- cer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles, Cancer Lett. 273 (2) (2009) 210 220. — N.K. Thakral, A.R. Ray, D.K. Majumdar, Eudragit S-100 entrapped chitosan micro- spheres of valdecoxib for colon cancer, J. Mater. Sci. Mater. Med. 21 (9) (2010) 2691 2699. — B.P. Depani, A.A. Naik, H.A. Nair, Preparation and evaluation of chitosan based ther- moreversible gels for intraperitoneal delivery of 5-fluorouracil (5-FU), Acta Pharm. 63 (4) (2013) 479 491. — — A.B. Sieval, M. Thanou, A.F. Kotze, J.C. Verhoef, J. Brussee, H.E. Junginger, Preparation and NMR characterization of highly substituted N-trimethyl chitosan chlo- ride, Carbohydr. Polym. 36 (2 3) (1998) 157 165. — A.F. Kotze, M.M. Thanou, H.L. Lueßen, A.B.G. de Boer, J.C. Verhoef, H.E. Junginger, Effect of the degree of quarternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2), Eur. J. Pharm. Biopharm. 47 (3) (1999) 269 274. M. Thanou, J.C. Verhoef, J.H.M. Verheijden, H.E. Junginger, Intestinal absorption of octreotide using tri-methyl chitosan chloride, studies in pigs, Pharm. Res. 18 (6) (2001) 823—828. J.H. Hamman, M. Stande, A.F. Kotze, Effect of the degree of quarternisation of N- trimethyl chitosan chloride on absorption enhancement, in vivo evaluation in rat nasal epithelia, Int. J. Pharm. 232 (1—2) (2002) 235—242. J.H. Hamman, C.M. Schultz, A.F. Kotze, N-trimethyl chitosan chloride, optimum degree of quarternization for drug absorption enhancement across epithelial cells, Drug Dev. Ind. Pharm. 29 (2) (2003) 161—172. F. Andrade, F. Goycoolea, D.A. Chiappetta, J. das Neves, A. Sosnik, B. Sarmento, Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery, Int. J. Carbohydr. Chem. (2011) 865704. — A.F. Martins, S.P. Facchi, J.P. Monteiro, S.R. Nocchi, C.T. Silva, C.V. Nakamura, et al., Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads contain- ing gold nanoparticles, Int. J. Biol. Macromol. 72 (2015) 466 471. — — E. Sayari, M. Dinarvand, M. Amini, M. Azhdarzadeh, E. Mollarazi, Z. Ghasemi, et al., MUC aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery, Int. J. Pharm. 473 (1 2) (2014) 304 315. — N.T. An, D.T. Thien, N.T. Dong, P.L. Dung, Water-soluble N-carboxymethylchitosan derivatives, preparation, characteristics and its application, Carbohydr. Polym. 75 (3) (2009) 489 497. — C. Feng, J. Li, M. Kong, Y. Liu, X.J. Cheng, Y. Li, et al., Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery, Colloids Surf. B Biointerfaces 128 (2015) 439 447. A. Anitha, M. Sreeranganathan, K.P. Chennazhi, V.K. Lakshmanan, R. Jayakumar, In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-car- boxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies, Eur. J. Pharm. Biopharm. 88 (1) (2014) 238—251. 428 Applications of Nanocomposite Materials in Drug Delivery — C. Feng, Z. Wang, C. Jiang, M. Kong, X. Zhou, Y. Li, et al., Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery, in vitro and in vivo evaluation, Int. J. Pharm. 457 (2013) 158 167. — Z. Tu, Y. Ma, W. Akers, S. Achilefu, Y. Gu, Therapeutic effect of the treatment for colorectal cancer with adenoviral vectors mediated estrogen receptor β gene therapy combined with thermotherapy, J. Cancer Res. Clin. Oncol. 140 (4) (2014) 623 632. — X.Y. Guo, P. Wang, Q.G. Du, S. Han, S.M. Zhu, Y.F. Lv, et al., Paclitaxel and gemci- tabine combinational drug-loaded mucoadhesive delivery system in the treatment of colon cancers, Drug Res. (Stuttg) 65 (4) (2015) 199 204. — A. Dal Pozzo, L. Vanini, M. Fagnoni, M. Guerrini, A. De Benedittis, R.A.A. Muzzarelli, Preparation and characterization of poly(ethylene glycol)-crosslinked reace- tylated chitosans, Carbohydr. Polym. 42 (2) (2000) 201 206. — X. Zhang, H. Zhang, Z. Wu, Z. Wang, H. Niu, C. Li, Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles, Eur. J. Pharm. Biopharm. 68 (3) (2008) 526 534. — G.Y. Hong, Y.I. Jeong, S.J. Lee, E. Lee, J.S. Oh, H.C. Lee, Combination of paclitaxel- and retinoic acid-incorporated nanoparticles for the treatment of CT-26 colon carci- noma, Arch Pharm. Res. 34 (3) (2011) 407 417. — C.W. Chung, K.D. Chung, Y.I. Jeong, D.H. Kang, 5-aminolevulinic acid-incorporated nanoparticles of methoxypoly(ethylene glycol)-chitosan copolymer for photodynamic therapy, Int. J. Nanomed. 8 (2013) 809 819. — A. Jain, S.K. Jain, In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors, Eur. J. Pharm. Sci. 35 (5) (2008) 404 416. — A. Jain, S.K. Jain, N. Ganesh, J. Barve, A.M. Beg, Design and development of ligand- appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal can- cer, Nanomedicines 6 (1) (2010) 179 190. — M. Hornof, D. Guggi, A. Bernkop Schnurch, Thiolated chitosans, Eur. J. Pharm. Biopharm. 57 (2004) 9 17. — A. Anitha, N. Deepa, K.P. Chennazhi, V.K. Lakshmanan, R. Jayakumar, Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment, Biochim. Biophys. Acta 840 (9) (2014) 2730 2743. — S.P. Akhlaghi, S. Saremi, S.N. Ostad, R. Dinarvand, F. Atyabi, Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines, Nanomedicines 6 (5) (2010) 689 697. P.S. Low, W.A. Henne, D.D. Doorneweerd, Discovery and development of folic-acid- based receptor targeting for imaging and therapy of cancer and inflammatory diseases, Acc. Chem. Res. 41 (1) (2008) 120—129. S.J. Yang, F.H. Lin, K.C. Tsai, M.F.H.M. Wei, J.M. Wong, M.J. Shieh, Folic acid- conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colo- rectal cancer cells, Bioconjug. Chem. 21 (4) (2010) 679—689. P. Li, Z. Yang, Y. Wang, Z. Peng, S. Li, L. Kong, et al., Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon, J. Microencapsul. 32 (1) (2015) 40—45. — P. Li, Y. Wang, F. Zeng, L. Chen, Z. Peng, L.X. Kong, Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells, Carbohydr. Res. 346 (6) (2011) 801 806. F. Yu, C. He, A.Y. Waddad, W.L. Munyendo, H. Lv, J. Zhou, et al., N-octyl-N-argi- nine-chitosan (OACS) micelles for gambogic acid oral delivery, preparation, characteri- zation and its study on in situ intestinal perfusion, Drug Dev. Ind. Pharm. 40 (6) (2014) 774—782. Oral colon cancer targeting by chitosan nanocomposites 429 A. Chopra, Cy5.5-Conjugated glycol chitosan-5β-cholanic acid nanoparticles. Molecular Imaging and Contrast Agent Database (MICAD) Internet, Bethesda (MD), National Center for Biotechnology Information (US) 2012 Mar 2 updated. — X. Yu, M.V. Pishko, Nanoparticle-based biocompatible and targeted drug delivery, characterization and in vitro studies, Biomacromolecules 12 (9) (2011) 3205 3212. — Y. Wang, H. Xu, J. Wang, L. Ge, J. Zhu, Development of a thermally responsive nano- gel based on chitosan-poly(N-isopropylacrylamide-co-acrylamide) for paclitaxel deliv- ery, J. Pharm. Sci. 103 (7) (2014) 2012 2021. — B. Xiao, M. Zhang, E. Viennois, Y. Zhang, N. Wei, M.T. Baker, et al., Inhibition of MDR gene expression and enhancing cellular uptake for effective colon cancer treat- ment using dual-surface-functionalized nanoparticles, Biomaterials 48 (2015) 147 160. N. Sanoj Rejinold, R.G. Thomas, M. Muthiah, K.P. Chennazhi, K. Manzoor, K. Park, et al., Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles, Int. J. Biol. Macromol. 74 (2015) 249—262. J.R. Kanwar, G. Mahidhara, K. Roy, S. Sasidharan, S. Krishnakumar, N. Prasad, et al., Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc, Nanomedicines 10 (1) (2015) 35—55. A. Sadio, J.K. Gustafsson, B. Pereira, C.P. Gomes, G.C. Hansson, L. David, et al., Modified-chitosan/siRNA nanoparticles downregulate cellular CDX2 expression and cross the gastric mucus barrier, PLoS One 9 (6) (2014) e99449. S. Hallaj Nezhadi, H. Valizadeh, S. Dastmalchi, B. Baradaran, M.B. Jalali, F. Dobakhti, et al., Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-2 and their expression in CT-26 colon carcinoma cells, J. Pharm. Pharm. Sci. 14 (2) (2011) 181—195. A. Bose, A. Elyagoby, T.W. Wong, Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment, Int. J. Pharm. 468 (1—2) (2014) 178—186. S.E. McNeil, Unique benefits of nanotechnology to drug delivery and diagnostics, in: S.E. McNeil (Ed.), Characterization of Nanoparticles Intended for Drug Delivery, Methods in Molecular Biology, Vol. 697, Springer, New York, 2011, pp. 3—8. J.I. Arias, M.A. Aller, I. Prieto, A. Arias, Z.D. Julian, H. Yang, et al., The amazing power of cancer cells to recapitulate extraembryonic functions: the cuckoo’s tricks, J. Oncol. 26 (2012) 521284. — M. Wang, M. Thanou, Targeting nanoparticles to cancer, Pharm. Res. 62 (2) (2010) 90 99. — F. Danhier, O. Feron, V. Preat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J. Control. Release 148 (2) (2010) 135 146. T. Ishida, H. Harashima, H. Kiwada, Liposome clearance, Biosci. Rep. 22 (2) (2002) 197—224. — H. Park, G. Saravanakumar, K. Kim, I.C. Kwon, Targeted delivery of low molecular drugs using chitosan and its derivatives, Adv. Drug Deliv. Rev. 62 (2010) 28 41. H. Maeda, H. Nakamura, J. Fang, The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo, Adv. Drug Deliv. Rev. 65 (1) (2013) 71—79. Download 215.78 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling