2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry


Download 199.36 Kb.
bet22/24
Sana18.06.2023
Hajmi199.36 Kb.
#1597694
1   ...   16   17   18   19   20   21   22   23   24
Bog'liq
2-Aminotiofenlar

References
[1] J. Li, S.G. Ballmer, E.P. Gillis, S. Fujii, M.J. Schmidt, A.M.E. Palazzolo, J.W. Lehmann, G.F. Morehouse, M.D. Burke, Synthesis of many different types of organic small molecules using one automated process, Science 347 (2015) 1221-1226.
[2] J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there?, Nat. Rev. Drug Discov. 5 (2006) 993-996.
[3] K. Gewald, Heterocyclen aus CH-aciden Nitrilen, VII. 2-Amino-thiophene aus α-Oxo-mercaptanen und methylenaktiven Nitrilen, Chem. Ber. 98 (1965) 3571-3577.
[4] K. Gewald, E. Schinke, Heterocyclen aus CH-aciden Nitrilen, X. Notiz zur Reaktion von Aceton mit Cyanessigester und Schwefel, Chem. Ber. 99 (1966) 2712-2715.
[5] K. Gewald, E. Schinke, H. Böttcher, Heterocyclen aus CH-aciden Nitrilen, VIII. 2-Amino-thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel, Chem. Ber. 99 (1966) 94-100.
[6] L.-S. Ge, Z.-L. Wang, X.-L. An, X. Luo, W.-P. Deng, Direct synthesis of polysubstituted 2-aminothiophenes by Cu(ii)-catalyzed addition/oxidative cyclization of alkynoates with thioamides, Org. Biomol. Chem. 12 (2014) 8473-8479.
[7] W. Shao, S.J. Kaldas, A.K. Yudin, 3-Cyanoallyl boronates are versatile building blocks in the synthesis of polysubstituted thiophenes, Chem. Sci. 8 (2017) 4431-4436.
[8] R. Tayebee, S.J. Ahmadi, E. Rezaei Seresht, F. Javadi, M.A. Yasemi, M. Hosseinpour, B. Maleki, Commercial Zinc Oxide: A Facile, Efficient, and Eco-friendly Catalyst for the One-Pot Three-Component Synthesis of Multisubstituted 2-Aminothiophenes via the Gewald Reaction, Ind. Eng. Chem. Res. 51 (2012) 14577-14582.
[9] V.K.R. Avula, S. Vallela, J.S. Anireddy, N.R. Chamarthi, A Green Synthesis of 2-Amino-4-(9H-carbazole-3-yl)thiophene-3-carbonitriles by a Step-wise and One-pot Three-component Gewald Reaction, J. Heterocyclic Chem. (2017) n/a-n/a.
[10] M.S. Abaee, A. Hadizadeh, M.M. Mojtahedi, M.R. Halvagar, Exploring the scope of the Gewald reaction: Expansion to a four-component process, Tetrahedron Lett. 58 (2017) 1408-1412.
[11] X. Luo, L.-S. Ge, X.-L. An, J.-H. Jin, Y. Wang, P.-P. Sun, W.-P. Deng, Regioselective Metal-Free One-Pot Synthesis of Functionalized 2-Aminothiophene Derivatives, J. Org. Chem. 80 (2015) 4611-4617.
[12] J. Thomas, S. Jana, M. Sonawane, B. Fiey, J. Balzarini, S. Liekens, W. Dehaen, A new four-component reaction involving the Michael addition and the Gewald reaction, leading to diverse biologically active 2-aminothiophenes, Org. Biomol. Chem. 15 (2017) 3892-3900.
[13] F. Javadi, R. Tayebee, B. Bahramian, TiO2/nanoclinoptilolite as an efficient nanocatalyst in the synthesis of substituted 2-aminothiophenes, Appl. Organomet. Chem. (2017) e3779-n/a.
[14] X. Zhang, M. Wu, J. Zhang, S. Cao, Synthesis of N,N-disubstituted 2-aminothiophenes by the cyclization of gem-difluoroalkenes with β-keto thioamides, Org. Biomol. Chem. 15 (2017) 2436-2442.
[15] A.-S.S.H. Elgazwy, M.M. Edrees, N.S.M. Ismail, Molecular modeling study bioactive natural product of khellin analogues as a novel potential pharmacophore of EGFR inhibitors, J. Enzyme Inhib. Med. Chem. 28 (2013) 1171-1181.
[16] K. Bozorov, H.-R. Ma, J.-Y. Zhao, H.-Q. Zhao, H. Chen, K. Bobakulov, X.-L. Xin, B. Elmuradov, K. Shakhidoyatov, H.A. Aisa, Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: Synthesis and in vitro biological evaluation. Part 1, Eur. J. Med. Chem. 84 (2014) 739-745.
[17] K. Bozorov, J.y. Zhao, L.F. Nie, H.-R. Ma, K. Bobakulov, R. Hu, N. Rustamova, G. Huang, T. Efferth, H.A. Aisa, Synthesis and in vitro biological evaluation of novel diaminothiophene scaffolds as antitumor and anti-influenza virus agents. Part 2, RSC Adv. 7 (2017) 31417-31427.
[18] J. Desantis, G. Nannetti, S. Massari, M.L. Barreca, G. Manfroni, V. Cecchetti, G. Palù, L. Goracci, A. Loregian, O. Tabarrini, Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity, Eur. J. Med. Chem. 138 (2017) 128-139.
[19] S. Al-Mousawi, M. El-Apasery, H. Mahmoud, Disperse Dyes Based on Aminothiophenes: Their Dyeing Applications on Polyester Fabrics and Their Antimicrobial Activity, Molecules 18 (2013) 7081.
[20] P.S. Fogue, P.K. Lunga, E.S. Fondjo, J. De Dieu Tamokou, B. Thaddée, J. Tsemeugne, A.T. Tchapi, J.-R. Kuiate, Substituted 2-aminothiophenes: antifungal activities and effect on Microsporum gypseum protein profile, Mycoses 55 (2012) 310-317.
[21] L. Scotti, M. Tullius Scotti, E. de Oliveira Lima, M. Sobral da Silva, M. do Carmo Alves de Lima, I. da Rocha Pitta, R. Olímpio de Moura, J. Gonzaga Batista de Oliveira, R.M. Duarte da Cruz, F.J. Bezerra Mendonça, Experimental Methodologies and Evaluations of Computer-Aided Drug Design Methodologies Applied to a Series of 2-Aminothiophene Derivatives with Antifungal Activities, Molecules 17 (2012) 2298.
[22] G.R.A. Eleamen, S.C.d. Costa, R.G. Lima-Neto, R.P. Neves, L.A. Rolim, P.J. Rolim-Neto, R.O. Moura, T.M.d. Aquino, E.S. Bento, M.T. Scotti, F.J.B. Mendonça-Junior, E.A.M. Mendonça, E.E. Oliveira, Improvement of Solubility and Antifungal Activity of a New Aminothiophene Derivative by Complexation with 2-Hydroxypropyl-²-cyclodextrin, J. Braz. Chem. Soc. 28 (2017) 116-125.
[23] S. Thanna, S.E. Knudson, A. Grzegorzewicz, S. Kapil, C.M. Goins, D.R. Ronning, M. Jackson, R.A. Slayden, S.J. Sucheck, Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis, Org. Biomol. Chem. 14 (2016) 6119-6133.
[24] C. Scheich, V. Puetter, M. Schade, Novel Small Molecule Inhibitors of MDR Mycobacterium tuberculosis by NMR Fragment Screening of Antigen 85C, J. Med. Chem. 53 (2010) 8362-8367.
[25] R. Narlawar, J.R. Lane, M. Doddareddy, J. Lin, J. Brussee, A.P. Ijzerman, Hybrid Ortho/Allosteric Ligands for the Adenosine A1 Receptor, J. Med. Chem. 53 (2010) 3028-3037.
[26] L.A. Sakkal, K.Z. Rajkowski, R.S. Armen, Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors, J. Comput. Chem. 38 (2017) 1209-1228.
[27] V. Oza, S. Ashwell, L. Almeida, P. Brassil, J. Breed, C. Deng, T. Gero, M. Grondine, C. Horn, S. Ioannidis, D. Liu, P. Lyne, N. Newcombe, M. Pass, J. Read, S. Ready, S. Rowsell, M. Su, D. Toader, M. Vasbinder, D. Yu, Y. Yu, Y. Xue, S. Zabludoff, J. Janetka, Discovery of Checkpoint Kinase Inhibitor (S)-5-(3-Fluorophenyl)-N-(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) by Structure-Based Design and Optimization of Thiophenecarboxamide Ureas, J. Med. Chem. 55 (2012) 5130-5142.
[28] L. Tavadyan, Z. Manukyan, L. Harutyunyan, M. Musayelyan, A. Sahakyan, H. Tonikyan, Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives, Antioxidants 6 (2017) 22.
[29] K. Madhavi, G. Sree Ramya, Synthesis, antioxidant and anti-inflammatory activities of ethyl 2-(2-cyano-3- (substituted phenyl)acrylamido)-4,5-dimethylthiophene-3-carboxylates, Asian J. Pharm. Clin. Res. 10 (2017) 95-100.
[30] C. Ballatore, A.B. Smith, V.M.Y. Lee, J.Q. Trojanowski, K.R. Brunden, Aminothienopyridazines as imaging probes of tau pathology: a patent evaluation of WO2013090497, Expert Opin. Ther. Pat. 24 (2014) 355-360.
[31] J. Hartwig, S. Ceylan, L. Kupracz, L. Coutable, A. Kirschning, Heating under High-Frequency Inductive Conditions: Application to the Continuous Synthesis of the Neurolepticum Olanzapine (Zyprexa), Angew. Chem. Int. Ed. 52 (2013) 9813-9817.
[32] K.C. Nadimpally, A. Chakrapani, P.J. Prabhu, K. Madica, G.J. Sanjayan, Rigid Peptide Scaffold-Incorporated Structural Analogs of the Potent Antidepressant Peptide Drug Rapastinel (GLYX-13), ChemistrySelect 2 (2017) 3594-3596.
[33] Z. Puterová, A. Krutošíková, D. Véghc, Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes, Arkivoc 1 (2010) 209-246.
[34] R.W. Sabnis, The Gewald reaction in dye chemistry, Color. Technol. 132 (2016) 49-82.
[35] Y. Huang, A. Dömling, The Gewald multicomponent reaction, Molec. Divers. 15 (2011) 3-33.
[36] A. El-Mekabaty, Chemistry of 2-Amino-3-carbethoxythiophene and Related Compounds, Synth. Commun. 44 (2014) 1-31.
[37] Patents, 2-Aminothiophene, in: www.scopus.com 2017.
[38] K. Bozorov, J.-Y. Zhao, B. Elmuradov, A. Pataer, H.A. Aisa, Recent developments regarding the use of thieno[2,3-d]pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties, Eur. J. Med. Chem. 102 (2015) 552-573.
[39] A.C. Véras of Aguiar, R.O. of Moura, J.F. Bezerra Mendonça Junior, H.A. de Oliveira Rocha, R.B. Gomes Câmara, M. dos Santos Carvalho Schiavon, Evaluation of the antiproliferative activity of 2-amino thiophene derivatives against human cancer cells lines, Biomed. Pharmacother. 84 (2016) 403-414.
[40] R. Romagnoli, P.G. Baraldi, O. Cruz-Lopez, M. Tolomeo, A.D. Cristina, R.M. Pipitone, S. Grimaudo, J. Balzarini, A. Brancale, E. Hamel, Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives, Bioorg. Med. Chem. Lett. 21 (2011) 2746-2751.
[41] R. Romagnoli, P.G. Baraldi, C. Lopez-Cara, M.K. Salvador, D. Preti, M.A. Tabrizi, J. Balzarini, P. Nussbaumer, M. Bassetto, A. Brancale, X.-H. Fu, G. Yang, J. Li, S.-Z. Zhang, E. Hamel, R. Bortolozzi, G. Basso, G. Viola, Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents, Bioorg. Med. Chem. 22 (2014) 5097-5109.
[42] J. Balzarini, J. Thomas, S. Liekens, S. Noppen, W. Dehaen, R. Romagnoli, 2-aminothiophene-3-carboxylic acid ester derivatives as novel highly selective cytostatic agents, Invest. New Drugs 32 (2014) 200-210.
[43] J. Thomas, A. Jejcic, P. Vervaeke, R. Romagnoli, S. Liekens, J. Balzarini, W. Dehaen, Structure–Activity Relationship of Tumor-Selective 5-Substituted 2-Amino-3-carboxymethylthiophene Derivatives, ChemMedChem 9 (2014) 2744-2753.
[44] J. Thomas, A. Jecic, E. Vanstreels, L. van Berckelaer, R. Romagnoli, W. Dehaen, S. Liekens, J. Balzarini, Pronounced anti-proliferative activity and tumor cell selectivity of 5-alkyl-2-amino-3-methylcarboxylate thiophenes, Eur. J. Med. Chem. 132 (2017) 219-235.
[45] W. Wang, S. Shangguan, N. Qiu, C. Hu, L. Zhang, Y. Hu, Design, synthesis and biological evaluation of novel 3,4,5-trisubstituted aminothiophenes as inhibitors of p53–MDM2 interaction. Part 1, Bioorg. Med. Chem. 21 (2013) 2879-2885.
[46] W. Wang, D. Lv, N. Qiu, L. Zhang, C. Hu, Y. Hu, Design, synthesis and biological evaluation of novel 3,4,5-trisubstituted aminothiophenes as inhibitors of p53–MDM2 interaction. Part 2, Bioorg. Med. Chem. 21 (2013) 2886-2894.
[47] W. Wang, X. Zhu, X. Hong, L. Zheng, H. Zhu, Y. Hu, Identification of novel inhibitors of p53-MDM2 interaction facilitated by pharmacophore-based virtual screening combining molecular docking strategy, Med. Chem. Commun. 4 (2013) 411-416.
[48] H.M. Aly, N.M. Saleh, H.A. Elhady, Design and synthesis of some new thiophene, thienopyrimidine and thienothiadiazine derivatives of antipyrine as potential antimicrobial agents, Eur. J. Med. Chem. 46 (2011) 4566-4572.
[49] T. Nasr, S. Bondock, S. Eid, Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety, Eur. J. Med. Chem. 84 (2014) 491-504.
[50] N. Tani, M. Rahnasto-Rilla, C. Wittekindt, K.A. Salminen, A. Ritvanen, R. Ollakka, J. Koskiranta, H. Raunio, R.O. Juvonen, Antifungal activities of novel non-azole molecules against S. cerevisiae and C. albicans, Eur. J. Med. Chem. 47 (2012) 270-277.
[51] M. Hrast, S. Turk, I. Sosič, D. Knez, C.P. Randall, H. Barreteau, C. Contreras-Martel, A. Dessen, A.J. O'Neill, D. Mengin-Lecreulx, D. Blanot, S. Gobec, Structure–activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF, Eur. J. Med. Chem. 66 (2013) 32-45.
[52] M. Hrast, M. Anderluh, D. Knez, C.P. Randall, H. Barreteau, A.J. O'Neill, D. Blanot, S. Gobec, Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold, Eur. J. Med. Chem. 73 (2014) 83-96.
[53] S. Massari, G. Nannetti, L. Goracci, L. Sancineto, G. Muratore, S. Sabatini, G. Manfroni, B. Mercorelli, V. Cecchetti, M. Facchini, G. Palù, G. Cruciani, A. Loregian, O. Tabarrini, Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly, J. Med. Chem. 56 (2013) 10118-10131.
[54] G. Muratore, L. Goracci, B. Mercorelli, Á. Foeglein, P. Digard, G. Cruciani, G. Palù, A. Loregian, Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase, Proc. Natl. Acad. Sci. 109 (2012) 6247-6252.
[55] X. Lu, B. Wan, S.G. Franzblau, Q. You, Design, synthesis and anti-tubercular evaluation of new 2-acylated and 2-alkylated amino-5-(4-(benzyloxy)phenyl)thiophene-3-carboxylic acid derivatives. Part 1, Eur. J. Med. Chem. 46 (2011) 3551-3563.
[56] G. Samala, P.B. Devi, R. Nallangi, J.P. Sridevi, S. Saxena, P. Yogeeswari, D. Sriram, Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: Molecular hybridization from known antimycobacterial leads, Bioorg. Med. Chem. 22 (2014) 1938-1947.
[57] S. Saxena, G. Samala, J.P. Sridevi, P.B. Devi, P. Yogeeswari, D. Sriram, Design and development of novel Mycobacterium tuberculosis l-alanine dehydrogenase inhibitors, Eur. J. Med. Chem. 92 (2015) 401-414.
[58] M.L. Booker, C.M. Bastos, M.L. Kramer, R.H. Barker, R. Skerlj, A. Bir Sidhu, X. Deng, C. Celatka, J.F. Cortese, J.E. Guerrero Bravo, K.N. Krespo Llado, A.E. Serrano, I. Angulo-Barturen, M.B. Jimenez-Diaz, S. Viera, H. Garuti, S. Wittlin, P. Papastogiannidis, J.-w. Lin, C.J. Janse, S.M. Khan, M. Duraisingh, B. Coleman, E.J. Goldsmith, M.A. Phillips, B. Munoz, D.F. Wirth, J.D. Klinger, R. Wiegand, E. Sybertz, Novel inhibitors of plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model, J. Biol. Chem. (2010).
[59] R.T. Skerlj, C.M. Bastos, M.L. Booker, M.L. Kramer, R.H. Barker, C.A. Celatka, T.J. O’Shea, B. Munoz, A.B. Sidhu, J.F. Cortese, S. Wittlin, P. Papastogiannidis, I. Angulo-Barturen, M.B. Jimenez-Diaz, E. Sybertz, Optimization of Potent Inhibitors of P. falciparum Dihydroorotate Dehydrogenase for the Treatment of Malaria, ACS Med. Chem. Lett. 2 (2011) 708-713.
[60] E.F. Silva-Júnior, E.P.S. Silva, P.H.B. França, J.P.N. Silva, E.O. Barreto, E.B. Silva, R.S. Ferreira, C.C. Gatto, D.R.M. Moreira, J.L. Siqueira-Neto, F.J.B. Mendonça-Júnior, M.C.A. Lima, J.H. Bortoluzzi, M.T. Scotti, L. Scotti, M.R. Meneghetti, T.M. Aquino, J.X. Araújo-Júnior, Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi, Bioorg. Med. Chem. 24 (2016) 4228-4240.
[61] K.A.d.F. Rodrigues, C.N.d.S. Dias, P.L.d.N. Néris, J.d.C. Rocha, M.T. Scotti, L. Scotti, S.R. Mascarenhas, R.C. Veras, I.A.d. Medeiros, T.d.S.L. Keesen, T.B.d. Oliveira, M.d.C.A.d. Lima, T.L. Balliano, T.M.d. Aquino, R.O.d. Moura, F.J.B. Mendonça Junior, M.R.d. Oliveira, 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro, Eur. J. Med. Chem. 106 (2015) 1-14.
[62] M.B. Félix, E.R. de Souza, M.d.C.A. de Lima, D.K.G. Frade, V.d.L. Serafim, K.A.d.F. Rodrigues, P.L.d.N. Néris, F.F. Ribeiro, L. Scotti, M.T. Scotti, T.M. de Aquino, F.J.B. Mendonça Junior, M.R. de Oliveira, Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies, Bioorg. Med. Chem. 24 (2016) 3972-3977.
[63] D. Bosc, E. Mouray, S. Cojean, C.H. Franco, P.M. Loiseau, L.H. Freitas-Junior, C.B. Moraes, P. Grellier, J. Dubois, Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors, Eur. J. Med. Chem. 109 (2016) 173-186.
[64] D. Ye, Y. Zhang, F. Wang, M. Zheng, X. Zhang, X. Luo, X. Shen, H. Jiang, H. Liu, Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity, Bioorg. Med. Chem. 18 (2010) 1773-1782.
[65] W.A.M. Elgaher, K.K. Sharma, J. Haupenthal, F. Saladini, M. Pires, E. Real, Y. Mély, R.W. Hartmann, Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors, J. Med. Chem. 59 (2016) 7212-7222.
[66] R. Romagnoli, P. G. Baraldi, M. A. Tabrizi, S. Gessi, P. A. Borea, S. Merighi, Allosteric Enhancers of A1 Adenosine Receptors: State of the Art and New Horizons for Drug Development, Curr. Med. Chem. 17 (2010) 3488-3502.
[67] A. Göblyös, A.P. Ijzerman, Allosteric modulation of adenosine receptors, Biochim. Biophys. Acta Biomembr. 1808 (2011) 1309-1318.
[68] S.J. Hill, L.T. May, B. Kellam, J. Woolard, Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization, Br. J. Pharmacol. 171 (2014) 1102-1113.
[69] R. Romagnoli, P.G. Baraldi, M.D. Carrion, C.L. Cara, O. Cruz-Lopez, M.K. Salvador, D. Preti, M.A. Tabrizi, J.C. Shryock, A.R. Moorman, F. Vincenzi, K. Varani, P.A. Borea, Structure–activity relationships of 2-amino-3-aroyl-4-[(4-arylpiperazin-1-yl)methyl]thiophenes. Part 2: Probing the influence of diverse substituents at the phenyl of the arylpiperazine moiety on allosteric enhancer activity at the A1 adenosine receptor, Bioorg. Med. Chem. 20 (2012) 996-1007.
[70] R. Romagnoli, P.G. Baraldi, M.D. Carrion, C. Lopez Cara, M. Kimatrai Salvador, D. Preti, M. Aghazadeh Tabrizi, A.R. Moorman, F. Vincenzi, P.A. Borea, K. Varani, Synthesis and biological effects of novel 2-amino-3-(4-chlorobenzoyl)-4-substituted thiophenes as allosteric enhancers of the A1 adenosine receptor, Eur. J. Med. Chem. 67 (2013) 409-427.
[71] R. Romagnoli, P.G. Baraldi, M.D. Carrion, C.L. Cara, O. Cruz-Lopez, M.K. Salvador, D. Preti, M.A. Tabrizi, A.R. Moorman, F. Vincenzi, P.A. Borea, K. Varani, Synthesis and Biological Evaluation of 2-Amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]-5-substituted-thiophenes. Effect of the 5-Modification on Allosteric Enhancer Activity at the A1 Adenosine Receptor, J. Med. Chem. 55 (2012) 7719-7735.
[72] R. Romagnoli, P.G. Baraldi, M.D. Carrion, O. Cruz-Lopez, C.L. Cara, G. Saponaro, D. Preti, M.A. Tabrizi, S. Baraldi, A.R. Moorman, F. Vincenzi, P.A. Borea, K. Varani, Synthesis and biological evaluation of novel 2-amino-3-aroyl-4-neopentyl-5-substituted thiophene derivatives as allosteric enhancers of the A1 adenosine receptor, Bioorg. Med. Chem. 22 (2014) 148-166.
[73] R. Romagnoli, P.G. Baraldi, A.P. Ijzerman, A. Massink, O. Cruz-Lopez, L.C. Lopez-Cara, G. Saponaro, D. Preti, M. Aghazadeh Tabrizi, S. Baraldi, A.R. Moorman, F. Vincenzi, P.A. Borea, K. Varani, Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A1 Adenosine Receptor Based on 2-Amino-3-(4′-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene, J. Med. Chem. 57 (2014) 7673-7686.
[74] R. Romagnoli, P.G. Baraldi, C. Lopez-Cara, O. Cruz-Lopez, A.R. Moorman, A. Massink, A.P. Ijzerman, F. Vincenzi, P.A. Borea, K. Varani, Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A1 adenosine receptor. A position-dependent effect study, Eur. J. Med. Chem. 101 (2015) 185-204.
[75] L. Aurelio, A. Christopoulos, B.L. Flynn, P.J. Scammells, P.M. Sexton, C. Valant, The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the A1 adenosine receptor, Bioorg. Med. Chem. Lett. 21 (2011) 3704-3707.
[76] D.H. Pandya, J.A. Sharma, H.B. Jalani, A.N. Pandya, V. Sudarsanam, S. Kachler, K.N. Klotz, K.K. Vasu, Novel thiazole–thiophene conjugates as adenosine receptor antagonists: Synthesis, biological evaluation and docking studies, Bioorg. Med. Chem. Lett. 25 (2015) 1306-1309.
[77] K. Akita, K. Harada, J. Ichihara, N. Takata, Y. Takahashi, K. Saito, A novel selective androgen receptor modulator, NEP28, is efficacious in muscle and brain without serious side effects on prostate, Eur. J. Pharmacol. 720 (2013) 107-114.
[78] T. Ganesh, Prostanoid Receptor EP2 as a Therapeutic Target, J. Med. Chem. 57 (2014) 4454-4465.
[79] T. Markovič, Ž. Jakopin, M.S. Dolenc, I. Mlinarič-Raščan, Structural features of subtype-selective EP receptor modulators, Drug Discov. Today 22 (2017) 57-71.
[80] J. Jiang, T. Ganesh, Y. Du, P. Thepchatri, A. Rojas, I. Lewis, S. Kurtkaya, L. Li, M. Qui, G. Serrano, R. Shaw, A. Sun, R. Dingledine, Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor, Proc. Natl. Acad. Sci. 107 (2010) 2307-2312.
[81] Y. Sun, J. Fan, Z. Zhu, X. Guo, T. Zhou, W. Duan, X. Shen, Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer's disease model mice, Eur. J. Pharmacol. 762 (2015) 202-213.
[82] C. Ballatore, K.R. Brunden, F. Piscitelli, M.J. James, A. Crowe, Y. Yao, E. Hyde, J.Q. Trojanowski, V.M.Y. Lee, A.B. Smith, Discovery of Brain-Penetrant, Orally Bioavailable Aminothienopyridazine Inhibitors of Tau Aggregation, J. Med. Chem. 53 (2010) 3739-3747.
[83] C. Ballatore, A. Crowe, F. Piscitelli, M. James, K. Lou, G. Rossidivito, Y. Yao, J.Q. Trojanowski, V.M.Y. Lee, K.R. Brunden, A.B. Smith Iii, Aminothienopyridazine inhibitors of tau aggregation: Evaluation of structure–activity relationship leads to selection of candidates with desirable in vivo properties, Bioorg. Med. Chem. 20 (2012) 4451-4461.
[84] M.P. Castelli, A. Casu, P. Casti, C. Lobina, M.A.M. Carai, G. Colombo, M. Solinas, D. Giunta, C. Mugnaini, S. Pasquini, A. Tafi, S. Brogi, G.L. Gessa, F. Corelli, Characterization of COR627 and COR628, Two Novel Positive Allosteric Modulators of the GABA(B) Receptor, J. Pharm. Exp. Ther. 340 (2012) 529-538.
[85] C. Mugnaini, V. Pedani, A. Casu, C. Lobina, A. Casti, P. Maccioni, A. Porcu, D. Giunta, S. Lamponi, M. Solinas, S. Dragoni, M. Valoti, G. Colombo, M.P. Castelli, G.L. Gessa, F. Corelli, Synthesis and Pharmacological Characterization of 2-(Acylamino)thiophene Derivatives as Metabolically Stable, Orally Effective, Positive Allosteric Modulators of the GABAB Receptor, J. Med. Chem. 56 (2013) 3620-3635.
[86] P.K. Kunda, J.V. Rao, K. Mukkanti, M. Induri, G.D. Reddy, Synthesis, anticonvulsant activity and in silco studies of schiff bases of 2-aminothiophenes via guanidine-catalyzed gewald reaction, Trop. J. Pharm. Res. 12 (2013) 566-576.
[87] C. Jamieson, S. Basten, R.A. Campbell, I.A. Cumming, K.J. Gillen, J. Gillespie, B. Kazemier, M. Kiczun, Y. Lamont, A.J. Lyons, J.K.F. Maclean, E.M. Moir, J.A. Morrow, M. Papakosta, Z. Rankovic, L. Smith, A novel series of positive modulators of the AMPA receptor: Discovery and structure based hit-to-lead studies, Bioorg. Med. Chem. Lett. 20 (2010) 5753-5756.
[88] C. Jamieson, R.A. Campbell, I.A. Cumming, K.J. Gillen, J. Gillespie, B. Kazemier, M. Kiczun, Y. Lamont, A.J. Lyons, J.K.F. Maclean, F. Martin, E.M. Moir, J.A. Morrow, J. Pantling, Z. Rankovic, L. Smith, A novel series of positive modulators of the AMPA receptor: Structure-based lead optimization, Bioorg. Med. Chem. Lett. 20 (2010) 6072-6075.
[89] B.M. Katzman, R.E. Perszyk, H. Yuan, Y.A. Tahirovic, A.E. Sotimehin, S.F. Traynelis, D.C. Liotta, A novel class of negative allosteric modulators of NMDA receptor function, Bioorg. Med. Chem. Lett. 25 (2015) 5583-5588.
[90] S. Bowers, A.P. Truong, R. Jeffrey Neitz, R.K. Hom, J.M. Sealy, G.D. Probst, D. Quincy, B. Peterson, W. Chan, R.A. Galemmo Jr, A.W. Konradi, H.L. Sham, G. Tóth, H. Pan, M. Lin, N. Yao, D.R. Artis, H. Zhang, L. Chen, M. Dryer, B. Samant, W. Zmolek, K. Wong, C. Lorentzen, E. Goldbach, G. Tonn, K.P. Quinn, J.-M. Sauer, S. Wright, K. Powell, L. Ruslim, Z. Ren, F. Bard, T.A. Yednock, I. Griswold-Prenner, Design and synthesis of brain penetrant selective JNK inhibitors with improved pharmacokinetic properties for the prevention of neurodegeneration, Bioorg. Med. Chem. Lett. 21 (2011) 5521-5527.
[91] S. Bowers, A.P. Truong, R.J. Neitz, M. Neitzel, G.D. Probst, R.K. Hom, B. Peterson, R.A. Galemmo Jr, A.W. Konradi, H.L. Sham, G. Tóth, H. Pan, N. Yao, D.R. Artis, E.F. Brigham, K.P. Quinn, J.-M. Sauer, K. Powell, L. Ruslim, Z. Ren, F. Bard, T.A. Yednock, I. Griswold-Prenner, Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based JNK inhibitor, Bioorg. Med. Chem. Lett. 21 (2011) 1838-1843.
[92] A.M. Haidle, A.A. Zabierek, K.K. Childers, C. Rosenstein, A. Mathur, M.D. Altman, G. Chan, L. Xu, E. Bachman, J.-R. Mo, M. Bouthillette, T. Rush, P. Tempest, C.G. Marshall, J.R. Young, Thiophene carboxamide inhibitors of JAK2 as potential treatments for myleoproliferative neoplasms, Bioorg. Med. Chem. Lett. 24 (2014) 1968-1973.
[93] K. Moffett, Z. Konteatis, D. Nguyen, R. Shetty, J. Ludington, T. Fujimoto, K.-J. Lee, X. Chai, H. Namboodiri, M. Karpusas, B. Dorsey, F. Guarnieri, M. Bukhtiyarova, E. Springman, E. Michelotti, Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD), Bioorg. Med. Chem. Lett. 21 (2011) 7155-7165.
[94] P.M. Titchenell, H.D. Hollis Showalter, J.-F. Pons, A.J. Barber, Y. Jin, D.A. Antonetti, Synthesis and structure–activity relationships of 2-amino-3-carboxy-4-phenylthiophenes as novel atypical protein kinase C inhibitors, Bioorg. Med. Chem. Lett. 23 (2013) 3034-3038.
[95] H. Takahashi, M. Shinoyama, T. Komine, M. Nagao, M. Suzuki, H. Tsuchida, K. Katsuyama, Novel dihydrothieno[2,3-e]indazole derivatives as IκB kinase inhibitors, Bioorg. Med. Chem. Lett. 21 (2011) 1758-1762.
[96] P. Liu, C. Shu, L. Liu, Q. Huang, Y. Peng, Design and synthesis of thiourea derivatives with sulfur-containing heterocyclic scaffolds as potential tyrosinase inhibitors, Bioorg. Med. Chem. 24 (2016) 1866-1871.
[97] N.A. Osman, A. Ligresti, C.D. Klein, M. Allarà, A. Rabbito, V. Di Marzo, K.A. Abouzid, A.H. Abadi, Discovery of novel Tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality, Eur. J. Med. Chem. 122 (2016) 619-634.
[98] A. Flood, C. Trujillo, G. Sanchez-Sanz, B. Kelly, C. Muguruza, L.F. Callado, I. Rozas, Thiophene/thiazole-benzene replacement on guanidine derivatives targeting α2-Adrenoceptors, Eur. J. Med. Chem. 138 (2017) 38-50.
[99] D. Briel, A. Rybak, C. Kronbach, K. Unverferth, Substituted 2-Aminothiopen-derivatives: A potential new class of GluR6-Antagonists, Eur. J. Med. Chem. 45 (2010) 69-77.
[100] S.K. Kolli, A. Nakhi, S. Archana, M. Saridena, G.S. Deora, S. Yellanki, R. Medisetti, P. Kulkarni, R. Ramesh Raju, M. Pal, Ligand-free Pd-catalyzed C–N cross-coupling/cyclization strategy: An unprecedented access to 1-thienyl pyrroloquinoxalines for the new approach towards apoptosis, Eur. J. Med. Chem. 86 (2014) 270-278.
[101] S.H. Jung, J.H. Suh, E.H. Kim, J.T. Kim, S.-E. Yoo, N.S. Kang, The discovery of inhibitors of Fas-mediated cell death pathway using the combined computational method, Bioorg. Med. Chem. Lett. 23 (2013) 5155-5164.
[102] M. Dakanali, T.H. Do, A. Horn, A. Chongchivivat, T. Jarusreni, D. Lichlyter, G. Guizzunti, M.A. Haidekker, E.A. Theodorakis, Self-calibrating viscosity probes: Design and subcellular localization, Bioorg. Med. Chem. 20 (2012) 4443-4450.

Download 199.36 Kb.

Do'stlaringiz bilan baham:
1   ...   16   17   18   19   20   21   22   23   24




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling