21-Amaliy mashg’ulot: O‘z-o‘zini tashkil etuvchi neyron to‘rlar


Download 13.72 Kb.
Pdf ko'rish
Sana16.06.2023
Hajmi13.72 Kb.
#1502822
Bog'liq
21-mavzu



21-Amaliy mashg’ulot: O‘z-o‘zini tashkil etuvchi neyron to‘rlar 
 
Pifagor teoremasi yordamida 2 tugun orasidagi Evklid masofasini hisoblash 
imkonini beradi. 
Kohonen tarmog'ining tugunlari to'rtburchaklar (yuqori) yoki olti burchakli (past) 
topologiyada bo'lishi mumkin. 
O'z-o'zini tashkil qilish xaritasi, qo'shimcha ravishda, og'irliklarni sozlash uchun 
xatolarni tuzatishni o'rganishdan farqli o'laroq, raqobatbardosh ta'limdan 
foydalanadi. Bu shuni anglatadiki, har bir iteratsiyada faqat bitta tugun faollashadi, 
unda kirish vektori namunasining xususiyatlari neyron tarmoqqa taqdim etiladi
chunki barcha tugunlar kirishga javob berish huquqi uchun raqobatlashadi. 
Tanlangan tugun - Eng yaxshi mos keladigan birlik (BMU) - joriy kirish qiymatlari 
va tarmoqdagi barcha tugunlar o'rtasidagi o'xshashlikka ko'ra tanlanadi. 


Kirish vektori va barcha tugunlar o'rtasidagi eng kichik Evklid farqiga ega bo'lgan 
tugun ma'lum bir radiusdagi qo'shni tugunlari bilan bir qatorda, ularning joylashuvi 
kirish vektoriga mos ravishda biroz sozlangan bo'lishi uchun tanlanadi. 
To'rda mavjud bo'lgan barcha tugunlardan o'tib, butun tarmoq oxir-oqibat to'liq 
kirish ma'lumotlar to'plamiga mos keladi, o'xshash tugunlar bir hududga to'plangan 
va o'xshash bo'lmaganlari ajratilgan. 
BMU sariq rangda, mahalla radiusi ichidagi qatlamlar pushti va binafsha rangda va 
tashqi tugunlar ko'k rangda bo'lgan Kohonen modeli. 
O'zgaruvchilar 
t - joriy iteratsiya 
n - iteratsiya chegarasi, ya'ni tarmoq o'tishi mumkin bo'lgan iteratsiyalarning 
umumiy soni 
l - vaqt doimiysi, radius va o'rganish tezligini pasaytirish uchun ishlatiladi 
i - tugunlar panjarasining qator koordinatasi 
j - tugunlar panjarasining ustun koordinatasi 
d - tugun va BMU orasidagi masofa 
w - vazn vektori 
w_ij(t) - tarmoqdagi i,j tugunlari va t iteratsiyasidagi kirish vektorining misoli 
orasidagi bog'lanishning og'irligi. 
x - kirish vektori 
x(t) - t iteratsiyasidagi kirish vektorining namunasi 
a(t) - tarmoqning birlashishini ta'minlash uchun 0,1 oraliqda vaqt o'tishi bilan 
kamayib boruvchi o'rganish tezligi. 
b_ij(t) qo‘shni funksiya bo‘lib, monoton kamayib, i tugunni, j ning BMU dan 
masofasini va uning t bosqichida o‘rganishga ta’sirini ifodalaydi. 


s(t) - qo'shnilik funksiyasining radiusi bo'lib, vektorlarni yangilashda 2D to'rda 
qo'shni tugunlar qanchalik uzoqda tekshirilishini aniqlaydi. Vaqt o'tishi bilan u asta-
sekin kamayadi. 
Algoritm 
Har bir tugunning w_ij vaznini tasodifiy qiymatga boshlang 
X_k tasodifiy kiritish vektorini tanlang 
Xaritadagi barcha tugunlar uchun 4. va 5. nuqtalarni takrorlang: 
Kirish vektori x(t) va birinchi tugun bilan bog'langan w_ij og'irlik vektori orasidagi 
Evklid masofasini hisoblang, bunda t, i, j = 0. 
Eng kichik masofani t hosil qiladigan tugunni kuzatib boring. 
Umumiy eng yaxshi mos keladigan birlikni (BMU), ya'ni barcha hisoblanganlardan 
eng kichik masofaga ega bo'lgan tugunni toping. 
Kohonen xaritasida BMU ning topologik qo'shniligi bij(t) uning radiusi s(t) ni 
aniqlang. 
BMU yaqinidagi barcha tugunlar uchun takrorlang: BMU qo'shnisidagi birinchi 
tugunning w_ij vazn vektorini kirish vektori x(t) va neyronning og'irligi w(t) 
o'rtasidagi farqning bir qismini qo'shish orqali yangilang. 
Tanlangan iteratsiya chegarasi t=n ga yetguncha ushbu iteratsiyani takrorlang 
 

Download 13.72 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling