3-amaliy topshiriq. 3- amaliy topshiriqlar
Download 392.11 Kb.
|
AHKU fanidan 3-amaliy. EFX 303
- Bu sahifa navigatsiya:
- Mavzular: 1. RSA algoritmi 2. A5/1 shifrlash algoritmi RSA algoritmiga oid misol: Familiya va Ism so‘zlarini shifrlaymiz
- {e;n}={7;33} Juftlik (d,n) RSA shaxsiy kalit: { d;n }={3;33}
- {e;n}={7;33}
- Shifrlanadigan matn
Axborot xavfsizligi yo’nalishi 130-20 guruh talabasi Eshmamatov Faxriddin Xayriddin o’g’li. Kriptologiyadan 3-amaliy topshiriq. 3- Amaliy topshiriqlar. Keltirilgan shifrlash usullaridan foydalanib har bir talaba tomonidan o‘z ism – shariflari shifrlansin va deshifrlansin (kalitlar ixtiyoriy tanlansin). Shifrlash jarayoni dasturlash tillari yordamida amalga oshirilsin. Dastur interfeysi va kodi pdf formatga o’tkazilib hemis tizimiga yuklansin. Mavzular: 1. RSA algoritmi 2. A5/1 shifrlash algoritmi RSA algoritmiga oid misol: Familiya va Ism so‘zlarini shifrlaymiz: RSA – (Rivest, Shamir Adleman) Ikki xil tasodifiy tub sonlar tanlanadi: p=3 va q=11 Ularning n qiymati hisoblanadi. n=p*q=3*11=33 bu modul deb ataladi. Sondan Eyler funksiyaning qiymati hisoblanadi n: µ(n)=(p-1)*(q-1)= (3-1)*(11-1)=2*10=20 Butun son tanlangan e (1 Raqam hisoblanadi d songa ko‘patma teskari e modul µ(n) ya’ni taqqoslashni qanoatlantiradigan raqam: d*e≡1*(mod µ(n)) raqam d maxfiy ko‘rsatkich deb ataladi. Odatda kengaytirilgan Evklid algoritmi yordamida hisoblab chiqiladi. Juftlik (e,n) RSA ochiq kalit: {e;n}={7;33} Juftlik (d,n) RSA shaxsiy kalit: {d;n}={3;33}
U holda ma’lumot Faxriddin (6,1,24,18,9,4,4,9,14) Eshmamatov (5,19,8,13,1,13,1,20,15,22) ko‘rinishda bo‘ladi va uni {e;n}={7;33} ochiq kalit bilan bir tomonli funksiya bilan shifrlaymiz: Faxriddin so’zini shifrlaymiz: x=6da SHM1=(67)(mod33)=279936(mod33)=30, x=1da SHM2=(17) (mod33)=1, x=24da SHM3=(247) (mod33)=4586471424(mod33)=18, x=18da SHM4=(187)(mod33)=612220032 (mod33)=6, x=9da SHM5=(97) (mod33)= 4782969(mod33)=15, x=4da SHM6=(47) (mod33)=16384(mod33)=16, x=4da SHM7=(47)(mod33)= 16384(mod33)=16, x=9da SHM8=(97) (mod33)= 4782969(mod33)=15, x=14da SHM9=(147) (mod33)=105413504 (mod33)=20. Eshmamatov so’zini shifrlaymiz: x=5da SHM1=(57)(mod33)=78125(mod33)=14, x=19da SHM2=(197) (mod33)=893871739(mod33)=13, x=8da SHM3=(87) (mod33)=2097152(mod33)=2, x=13da SHM4=(137)(mod33)=62748517(mod33)=7, x=1da SHM5=(17) (mod33)=1, x=13da SHM6=(137) (mod33)= 62748517(mod33)=7, x=1da SHM7=(17) (mod33)=1, x=20da SHM8=(207) (mod33)= 1280000000(mod33)=26, x=15da SHM9=(157) (mod33)=170859375(mod33)=27, x=22da SHM10=(227) (mod33)=2494357888(mod33)=22. Bu olingan shifrlangan (30,1,18,6,15,16,16,15,2) (14,13,2,7,1,7,1,26,27,22)ma’lumotni maxfiy {d;n}={3;33} kalit bilan ifoda orqali deshifrlaymiz: Faxriddin so’zini deshifrlaymiz: x=30da OchM1=(303)(mod33)=27000(mod33)=6, x=1da OchM2=(13) (mod33)=1, x=18da OchM3=(183) (mod33)=5832(mod33)=24, x=6da OchM4=(63)(mod33)=216(mod33)=18, x=15da OchM5=(153) (mod33)= 3375(mod33)=9, x=16da OchM6=(163) (mod33)= 4096(mod33)=4, x=16da OchM7=(163)(mod33)=4096(mod33)=4, x=15da OchM8=(153) (mod33)=3375(mod33)=9, x=20da OchM9=(203) (mod33)=8000(mod33)=14. Eshmamatov so’zini deshifrlaymiz: x=14da OchM1=(143)(mod33)=2744(mod33)=5, x=13da OchM2=(133) (mod33)=2197(mod33)=19, x=2da OchM3=(23) (mod33)=8, x=7da OchM4=(73) (mod33)= 343(mod33)=13, x=1da OchM5=(13) (mod33)=1, x=7da OchM6=(73) (mod33)= 343(mod33)=13, x=1da OchM7=(13) (mod33)=1, x=26da OchM8=(263) (mod33)= 17576(mod33)=20, x=27da OchM9=(273) (mod33)=19683(mod33)=15, x=22da OchM10=(223) (mod33)=10648(mod33)=22. Shifrlanadigan matn: Faxriddin (6,1,24,18,9,4,4,9,14) Eshmamatov (5,19,8,13,1,13,1,20,15,22) Shifrlangan matn: Faxriddin (30,1,18,6,15,16,16,15,2) Eshmamatov (14,13,2,7,1,7,1,26,27,22) Shifrlangan matnni deshifrlaymiz: Faxriddin (6,1,24,18,9,4,4,9,14) Eshmamatov (5,19,8,13,1,13,1,20,15,22) Shifrlangan matnni deshifrlaganimizda yana shifrlanadigan matnimizni o’zi hosil bo’ldi. Download 392.11 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling