3-amaliy topshiriq. 3- amaliy topshiriqlar


Download 392.11 Kb.
bet1/3
Sana04.04.2023
Hajmi392.11 Kb.
#1327791
  1   2   3
Bog'liq
AHKU fanidan 3-amaliy. EFX 303



Axborot xavfsizligi yo’nalishi 130-20 guruh talabasi Eshmamatov Faxriddin Xayriddin o’g’li. Kriptologiyadan 3-amaliy topshiriq.


3- Amaliy topshiriqlar.
Keltirilgan shifrlash usullaridan foydalanib har bir talaba tomonidan o‘z ism – shariflari shifrlansin va deshifrlansin (kalitlar ixtiyoriy tanlansin). Shifrlash jarayoni dasturlash tillari yordamida amalga oshirilsin. Dastur interfeysi va kodi pdf formatga o’tkazilib hemis tizimiga yuklansin.


Mavzular:
1. RSA algoritmi
2. A5/1 shifrlash algoritmi



  1. RSA algoritmiga oid misol: Familiya va Ism so‘zlarini shifrlaymiz:

RSA – (Rivest, Shamir Adleman)



  1. Ikki xil tasodifiy tub sonlar tanlanadi: p=3 va q=11

  2. Ularning n qiymati hisoblanadi. n=p*q=3*11=33 bu modul deb ataladi.

  3. Sondan Eyler funksiyaning qiymati hisoblanadi n:

µ(n)=(p-1)*(q-1)= (3-1)*(11-1)=2*10=20

  1. Butun son tanlangan e (1

  2. Raqam hisoblanadi d songa ko‘patma teskari e modul µ(n) ya’ni taqqoslashni qanoatlantiradigan raqam: d*e≡1*(mod µ(n)) raqam d maxfiy ko‘rsatkich deb ataladi. Odatda kengaytirilgan Evklid algoritmi yordamida hisoblab chiqiladi.

  3. Juftlik (e,n) RSA ochiq kalit: {e;n}={7;33}

  4. Juftlik (d,n) RSA shaxsiy kalit: {d;n}={3;33}


A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26


  • U holda ma’lumot Faxriddin (6,1,24,18,9,4,4,9,14) Eshmamatov (5,19,8,13,1,13,1,20,15,22) ko‘rinishda bo‘ladi va uni {e;n}={7;33} ochiq kalit bilan  bir tomonli funksiya bilan shifrlaymiz:

Faxriddin so’zini shifrlaymiz:
x=6da SHM1=(67)(mod33)=279936(mod33)=30,
x=1da SHM2=(17) (mod33)=1,
x=24da SHM3=(247) (mod33)=4586471424(mod33)=18, x=18da SHM4=(187)(mod33)=612220032 (mod33)=6,
x=9da SHM5=(97) (mod33)= 4782969(mod33)=15,
x=4da SHM6=(47) (mod33)=16384(mod33)=16, x=4da SHM7=(47)(mod33)= 16384(mod33)=16,
x=9da SHM8=(97) (mod33)= 4782969(mod33)=15,
x=14da SHM9=(147) (mod33)=105413504 (mod33)=20.
Eshmamatov so’zini shifrlaymiz:
x=5da SHM1=(57)(mod33)=78125(mod33)=14,
x=19da SHM2=(197) (mod33)=893871739(mod33)=13,
x=8da SHM3=(87) (mod33)=2097152(mod33)=2, x=13da SHM4=(137)(mod33)=62748517(mod33)=7,
x=1da SHM5=(17) (mod33)=1,
x=13da SHM6=(137) (mod33)= 62748517(mod33)=7, x=1da SHM7=(17) (mod33)=1,
x=20da SHM8=(207) (mod33)= 1280000000(mod33)=26,
x=15da SHM9=(157) (mod33)=170859375(mod33)=27, x=22da SHM10=(227) (mod33)=2494357888(mod33)=22.

  • Bu olingan shifrlangan (30,1,18,6,15,16,16,15,2) (14,13,2,7,1,7,1,26,27,22)ma’lumotni maxfiy {d;n}={3;33} kalit bilan ifoda orqali deshifrlaymiz: 

Faxriddin so’zini deshifrlaymiz:


x=30da OchM1=(303)(mod33)=27000(mod33)=6,
x=1da OchM2=(13) (mod33)=1,
x=18da OchM3=(183) (mod33)=5832(mod33)=24, x=6da OchM4=(63)(mod33)=216(mod33)=18,
x=15da OchM5=(153) (mod33)= 3375(mod33)=9,
x=16da OchM6=(163) (mod33)= 4096(mod33)=4, x=16da OchM7=(163)(mod33)=4096(mod33)=4,
x=15da OchM8=(153) (mod33)=3375(mod33)=9,
x=20da OchM9=(203) (mod33)=8000(mod33)=14.
Eshmamatov so’zini deshifrlaymiz:
x=14da OchM1=(143)(mod33)=2744(mod33)=5,
x=13da OchM2=(133) (mod33)=2197(mod33)=19,
x=2da OchM3=(23) (mod33)=8, x=7da OchM4=(73) (mod33)= 343(mod33)=13,
x=1da OchM5=(13) (mod33)=1,
x=7da OchM6=(73) (mod33)= 343(mod33)=13, x=1da OchM7=(13) (mod33)=1,
x=26da OchM8=(263) (mod33)= 17576(mod33)=20,
x=27da OchM9=(273) (mod33)=19683(mod33)=15, x=22da OchM10=(223) (mod33)=10648(mod33)=22.



Shifrlanadigan matn: Faxriddin (6,1,24,18,9,4,4,9,14)

Eshmamatov (5,19,8,13,1,13,1,20,15,22)


Shifrlangan matn: Faxriddin (30,1,18,6,15,16,16,15,2)
Eshmamatov (14,13,2,7,1,7,1,26,27,22)

Shifrlangan matnni deshifrlaymiz: Faxriddin (6,1,24,18,9,4,4,9,14) Eshmamatov (5,19,8,13,1,13,1,20,15,22)
Shifrlangan matnni deshifrlaganimizda yana shifrlanadigan matnimizni o’zi hosil bo’ldi.


Download 392.11 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling