Виды математических моделей ЛП
Математическая модель задачи ЛП может быть канонической и неканонической.
Определение . Если все ограничения системы заданы уравнениями и переменные Xj неотрицательные, то такая модель задачи называется канонической.
Если хотя бы одно ограничение является неравенством, то модель задачи ЛП является неканонической. Чтобы перейти от неканонической модели к канонической, необходимо в каждое
неравенство ввести балансовую переменную хn+i .
Если знак неравенства < , то балансовая переменная вводится со знаком плюс, если знак неравенства >, то — минус. В целевую функцию балансовые переменные не вводятся.
Чтобы составить математическую модель задачи ЛП, необходимо:
— ввести обозначения переменных;
— исходя из цели экономических исследований, составить целевую функцию;
— учитывая ограничения в использовании экономических показателей задачи и их количественные закономерности, записать систему ограничений.
3. 2 Двойственность в задачах линейного программирования
Каждая задача линейного программирования, называемая прямой или исходной, тесно связана с другой задачей, ее называют двойственной.
Математические модели этих задач имеют следующий вид.
прямая задача:
|
двойственная задача:
|
Эти задачи экономически могут быть сформулированы следующим образом.
Прямая задача: сколько и какой продукции хi(i-1, 2, … , n) надо произвести, чтобы при заданных стоимостях единицы продукции Сi, объемом имеющихся ресурсов bj (j=1,2,…, m) и нормах расхода ресурсов аij максимизировать выпуск продукции в стоимостном виде.
Do'stlaringiz bilan baham: |