3-mavzu. Koshi va Dalamber alomatlari. Koshining integral alomati


-Мисол. Қаторни яқинлашувчилигини текширинг: Ечиш


Download 123.16 Kb.
bet5/6
Sana24.07.2023
Hajmi123.16 Kb.
#1662009
1   2   3   4   5   6
Bog'liq
metodik (1)

1-Мисол. Қаторни яқинлашувчилигини текширинг:

Ечиш. Маълумки , ,

Демак , қатор узоқлашувчи.
2-Мисол. Берилган қаторни яқинлашувчилигини текширинг:

Ечиш.

Демак , қатор яқинлашувчи.
3-Мисол. Қаторни яқинлашувчилигини кўрсатинг:

Ечиш. ;
Qatorning yaqinlashishi to‘g‘risida Dalamber alomati asosida xulosa chiqarish mumkin emas. Taqqoslash alomatiga ko‘ra, qatorning uzoqlashuvchanligini ko‘rish mumkin.

Саволлар



2.4-илова



Коши аломати
Теорема. Агар мусбат ҳадли қатор учун ифода да чекли лимитга эга бўлса , яъни ,
у ҳолда

  1. да қатор яқинлашади ;

  2. да қатор узоқлашади.

Теорема Даламбер аломати каби исботланади.
4-Мисол. Берилган қаторни яқинлашувчилигини текширинг:

Ечиш.
Демак , қатор яқинлашувчи.
5-Мисол. қаторни яқинлашувчи-лигини текширинг.
Ечиш. .
Қатор узоқлашувчи.

Саволлар



2.5-илова



Кошининг интеграл аломати, умумлашган гармоник қатор
Теорема. Агар [1;) оралиқда номанфий интегралланувчи функция монотон камаювчи ва қатор ҳадлари учун тенгликлар ўринли бўлса , у ҳолда қатор ва хосмас интеграллар бир вақтда яқинлашувчи ёки бир вақтда узоқлашувчи бўлади; яқинлашувчи бўлган ҳолда
  +a1 (4)
муносабат ўринли бўлади.
Исботи. функциянинг монотон камаювчилигидан kxk+1 тенгсизликлардан f(k)  f(x)  f(k+1) келиб чиқади. Бу қўш тенгсизликни k дан k+1 гача интеграллаб,
  , ёки f(k)=ak бўлганлиги учун ak   ak+1 қўш тенгсизликларга эришамиз. Сўнги тенгсизликларни k=1, 2, , n учун ёзамиз:
a1   a2,
a2   a3 , ,
an   an+1.
Буларни ҳадма-ҳад қўшиб, қуйидагига эга бўламиз:
Sn   Sn+1-a1 (5)
Қуйидаги ҳолларни қараймиз.
1) интеграл яқинлашувчи ва I га тенг. У ҳолда I ва Sn+1 I+a1=C ёки барча натурал n ларда Sn  I. Демак, (Sn) кетма-кетлик юқоридан чегараланган, бундан қатор яқинлашувчи.
Ва аксинча, агар қатор яқинлашувчи бўлса, у ҳолда (Sn) кетма-кетлик юқоридан чегараланган, демак умумий ҳади In+1= бўлган монотон ўсувчи кетма-кетлик яқинлашувчи бўлади, яъни интеграл яқинлашувчи бўлади.
2) интеграл узоқлашувчи бўлсин. У ҳолда Sn  тенгсизликдан (Sn) кетма-кетлик юқоридан чегараланмаган, бундан қатор узоқлашувчи эканлиги келиб чиқади. Агар да қатор узоқлашувчи бўлса, у ҳолда унинг хусусий йиғиндиларидан иборат (Sn) кетма-кетлик юқоридан чегараланмаган, демак, умумий ҳади In+1= бўлган кетма-кетлик ҳам чегараланмаган. Бундан интегралнинг узоқлашувчилиги келиб чиқади.
Қатор яқинлашувчи бўлган ҳолда (5) қўштенгсизликда n лимитга ўтиб,
S   S-a1 муносабатга, бундан (4) га эга бўламиз.

Download 123.16 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling