3-Mustaqil ishi reja: p va np sinflar,np-to`liq masalalar tushunchasi
Download 20.8 Kb.
|
3-Mustaqil ishi reja p va np sinflar,np-to`liq masalalar tushun-fayllar.org
NP-qiyin – agar X ∈ NP X-ga tushadigan bo’lsa, X muammosi kamida Npda hal qilinadi, masalan NP-ning har bir muammosini hal qilish qiyin (agar P! = NP bo’lsa, unda X P ga tegishli bo’lmaydi).Reduksiya – A muammoni kiritishlarni ko’paytma vaqt algoritmidan foydalanib, B muammosining ekvivalent kirishiga aylantirish jarayoni. Ekvivalent degani, A va B muammolari kirish va o’zgartirilgan kirish uchun bir xil javobni (Ha yoki Yo’q) berishi kerak. A dan B gacha qisqartirish algoritmining mavjudligi quyidagilarni nazarda tutadi:1. Agar B ∈ P bo’lsa, u holda A ∈ P (ko’paytmali vaqt ichida A dan B gacha qisqartirishingiz mumkin va B polinomik vaqt ichida echishingiz mumkin. Buni birlashtirish A uchun ko’p vaqtli algoritmni beradi)2. Agar B ∈ NP bo’lsa, unda A ∈ NP3. Agar A NP-qattiq bo’lsa, B – NP-qattiq. A ko’paytirilgan vaqt ichida B ga kamayishi mumkin va agar B NP-qiyin bo’lmasa, u B B NP-NP-qiyin va bu A ∈ NP-NP-qattiq, bu farazga zid (A-NP-qiyin) degan ma’noni anglatadi.NP-to’liqligi – agar X ∈ NP va X bo’lsa, NP-qiyin bo’lsa, X muammo NP-tugallanadi. 1-qadam – X ∈ NP ni ko’rsatish. X uchun netereterministik algoritmni toping. Ammo amaliy usul, agar potentsial echim taqdim etilsa, X uchun ko’paytmali vaqt tekshiruvini o’tkazishdir.2-qadam – X-ni ko’rsatish qiyin emas. Ma’lum NP-muammoni X-ga qisqartirish. Demak, biz ko’rgan 3-rasm orqali X bu NP-qiyin ekanligini anglatadi.NP-qiyin – agar X ∈ NP X-ga tushadigan bo’lsa, X muammosi kamida Npda hal qilinadi, masalan NP-ning har bir muammosini hal qilish qiyin (agar P! = NP bo’lsa, unda X P ga tegishli bo’lmaydi).Reduksiya – A muammoni kiritishlarni ko’paytma vaqt algoritmidan foydalanib, B muammosining ekvivalent kirishiga aylantirish jarayoni. Ekvivalent degani, A va B muammolari kirish va o’zgartirilgan kirish uchun bir xil javobni (Ha yoki Yo’q) berishi kerak. A dan B gacha qisqartirish algoritmining mavjudligi quyidagilarni nazarda tutadi:1. Agar B ∈ P bo’lsa, u holda A ∈ P (ko’paytmali vaqt ichida A dan B gacha qisqartirishingiz mumkin va B polinomik vaqt ichida echishingiz mumkin. Buni birlashtirish A uchun ko’p vaqtli algoritmni beradi)2. Agar B ∈ NP bo’lsa, unda A ∈ NP3. Agar A NP-qattiq bo’lsa, B – NP-qattiq. A ko’paytirilgan vaqt ichida B ga kamayishi mumkin va agar B NP-qiyin bo’lmasa, u B B NP-NP-qiyin va bu A ∈ NP-NP-qattiq, bu farazga zid (A-NP-qiyin) degan ma’noni anglatadi.NP-to’liqligi – agar X ∈ NP va X bo’lsa, NP-qiyin bo’lsa, X muammo NP-tugallanadi. 1-qadam – X ∈ NP ni ko’rsatish. X uchun netereterministik algoritmni toping. Ammo amaliy usul, agar potentsial echim taqdim etilsa, X uchun ko’paytmali vaqt tekshiruvini o’tkazishdir.2-qadam – X-ni ko’rsatish qiyin emas. Ma’lum NP-muammoni X-ga qisqartirish. Demak, biz ko’rgan 3-rasm orqali X bu NP-qiyin ekanligini anglatadi. Download 20.8 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling