3*. Berilgan modul bo’yicha har qanday butun son o’zining qoldig’i bilan taqqoslanishini isbot qiling.
4. Quyidagi taqqoslamalarni qanoatlantiradigan x ning barcha qiymatlarini toping:
a) x 0 (mod 3); b) x 1 (mod 2).
5. Quyidagi taqqoslamalarni qanoatlantiradigan m ning barcha qiymatlarini toping: 3r + 1 r + 1 (mod m).
6. Agar x = 13 soni x 5 (mod m) taqqoslamani qanoatlantirsa, modulning mumkin bo’lgan qiymatlarini toping.
7*. Agar n – toq son bo’lsa, u holda n2 - 1 0 (mod 8) taqqoslama o’rinli ekanligini ko’rsating.
8*. Agar 100a + 10b + c 0 (mod 21) bo’lsa, u holda a – 2b + 4c 0 (mod 21) taqqoslamaning o’rinli ekanligini ko’rsating.
9. Agar 3n -1 (mod 10) bo’lsa, u holda 3n+4 -1 (mod 10) (nN ) taqqoslamaning o’rinli ekanligini ko’rsating,.
10*. 211 31 2 (mod 1131) taqqoslamaning to’g’riligini ko’rsating.
11*. Agar x = 3n + 1, n = 0, 1, 2,.... bo’lsa, u holda 1 + 3x + 9x ning 13 ga bo’linishini ko’rsating.
12. N = 111823221319 soni 7 modul bo’yicha absolyut qiymati bo’yicha eng kichik qanday son bilan taqqoslanadi?
13. 314 -1 (mod 29) ni tekshiring.
14. 15325 – 1 ni 9 ga bo’lganda hosil bo’ladigan qoldiqni toping.
15*. Agar a b (mod pn) bo’lsa, u holda ap bp (mod pn+1) ni isbotlang.
16 Agar ax bx (mod m) bo’lsa, u holda ni isbotlang.
17*. Agar a4a3a2a1a0 0 (mod 33) bo’lsa, u holda
a4 + a3a2 + a1a0 0 (mod 33) ni isbotlang. ai+1 = 0 da ai+1ai = ai
deb oling.
18*. Berilgan sonning oxirgi ikkita raqamini toping: a) 99 ; b) 79 .
19*. rr+2 + (r+2)r 0 (mod 2r+2) taqqoslamani isbot qiling, bu yerda r > 2.
Do'stlaringiz bilan baham: |