9 – sinf I chorak


Download 137 Kb.
Sana23.12.2022
Hajmi137 Kb.
#1047380
Bog'liq
9 – sinf


Aim.Uz

Metod birlashmada ko`rib chiqildi.
Metod birlashma raisi Madjitova U,
9 – sinf 2 – chorak I variant
1. parabolaning koordinata o`qlari bilan kesishish nuqtalarining koordinatalarini toping.
A. (-1;3) B. (3;1) C. (1;3) D. (0;4)
2. parabola uchining koordinatalarini toping.
A. (0;4) B. (4;2) C. (2;-4) D. (-4;-2)
3. tengsizlikni yeching.
A. B. C. D.
4. tengsizlikni yeching.
A. B. C. D.
5. Hisoblang:
A. B. C. D.
6. Hisoblang:
A. B. C. D. 11,25
7. Hisoblang:
A. B. 1 C. -1 D. 2
8. k ning shunday qiymatini topingki, parabola bilan to`g`ri chiziqning kesishish nuqtalaridan birining absissasi bo`lsin.
A. k = -1 B. k = 1 C. k = 2 D. k = -2
9. tengsizlikni yeching.
A. B. C. , D.
10. tengsizlikning barcha butun yechimlari yig`indisini toping.
A. -3 B. 6 C. 3 D. 4
11. АBC va А1 B1 C1 uchburchaklar o‘xshash bo‘lib, АB kesma 2sm, BC kesma 3sm va
А1 B1 kesma 6sm ga teng. B1 C1 ni toping.
A. 2sm; B. 6sm; C. 4sm; D. 3sm.
12. Ikki o‘xshash uchburchaklardan birining tomonlari 7sm, 12sm, 16sm, ikkinchisining tomonlari esa 40sm, 30sm va х sm bo‘lsa, х ni toping.
A. 18sm; B. 20sm; C. 24sm; D. 18,5 sm.
13. CDЕ uchburchakda ЕC = 26 sm, MN CE, bunda M CD, N ED.
Agar CM = 8sm va MN = 20sm bo‘lsa CD ni toping
A. 24sm ; B. 27sm; C. sm; D. 24sm.
14. Uchburchak tomonlari 5, 6, 8 sonlariga proporsional bo‘lib, unda o‘xshash uchburchakning perimetri 96 sm bo‘lsa, shu uchburchakning tomonlarini aniqlang?
A. 25sm, 29sm; 40 sm; B. 15sm; 40sm; 40sm; C. 25sm; 30sm; 40sm; D. 35sm, 20sm. 40sm.
15. Agar α =60о bo‘lsa, sin2α + cos2α ni hisoblang
А. 0; B. 1; C. 2; D. 3.
9 – sinf 2 – chorak I II variant

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15




























D

C

B

B

A

B

C

B

C

C

D

B

C

D

B



























Metod birlashmada ko`rib chiqildi.


Metod birlashma raisi Madjitova U,
9 – sinf 2 – chorak II variant
1. parabola uchining koordinatalarini toping.
A. (- ; ) B. ( ;- ) C. (- ;- ) D. ( ; )
2. parabolaning koordinata o`qlari bilan kesishish nuqtalarini ng koordinatalarini toping.
A. (-1;2) B. (0;-5) C. (0;4) D. (4;0)
3. tengsizlikni yeching.
A. B. C. D.
4. tengsizlikni yeching.
A. B. C. D.
5. Hisoblang:
A. B. C. D.
6. Hisoblang:
A. B. C. D. 11,25
7. Hisoblang:
A. B. 1 C. -1 D. 2
8. k ning shunday qiymatini topingki, parabola bilan to`g`ri chiziqning kesishish nuqtalaridan birining absissasi bo`lsin.
A. k = -1 B. k = 1 C. k = 2 D. k = -2
9. tengsizlikni yeching.
A. B. C. , D.
10. tengsizlikning barcha butun yechimlari yig`indisini toping.
A. -3 B. 6 C. 3 D. 4
11. АBC va А1 B1 C1 uchburchaklar o‘xshash bo‘lib, АB kesma 2sm, BC kesma 3sm va
А1 B1 kesma 6sm ga teng. B1 C1 ni toping.
A. 2sm; B. 6sm; C. 4sm; D. 3sm.
12. Ikki o‘xshash uchburchaklardan birining tomonlari 7sm, 12sm, 16sm, ikkinchisining tomonlari esa 40sm, 30sm va х sm bo‘lsa, х ni toping.
A. 18sm; B. 20sm; C. 24sm; D. 18,5 sm.
13. CDЕ uchburchakda ЕC = 26 sm, MN CE, bunda M CD, N ED.
Agar CM = 8sm va MN = 20sm bo‘lsa CD ni toping
A. 24sm ; B. 27sm; C. sm; D. 24sm.
14. Uchburchak tomonlari 5, 6, 8 sonlariga proporsional bo‘lib, unda o‘xshash uchburchakning perimetri 96 sm bo‘lsa, shu uchburchakning tomonlarini aniqlang?
A. 25sm, 29sm; 40 sm; B. 15sm; 40sm; 40sm; C. 25sm; 30sm; 40sm; D. 35sm, 20sm. 40sm.
15. Agar α =60о bo‘lsa, sin2α + cos2α ni hisoblang
А. 0; B. 1; C. 2; D. 3.
Download 137 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling