9-Mavzu: Hosil qiluvchi funksiyalar va ularning tatbiqi
Download 155.21 Kb.
|
Hosil qiluvchi funksiyalar va ularning tatbiqi
9-Mavzu: Hosil qiluvchi funksiyalar va ularning tatbiqiHosil qiluvchi funksiyalar shu ketma-ketlik yordamida tuzilgan u1 u2 ... un ...uk k1 ifoda sonli cheksiz qator yoki, qisqacha, qator deb, u1 , u2 ,..., un ,... chekli sonlar esa qatorning hadlari deb ataladi. sn u1 u2 ... un yig‘indiga qatorning xususiy yig‘indisi deyiladi. Agar qatorning xususiy yig‘indilaridan tuzilgan s1, s2 ,..., sn ,... ketma- ketlik chekli limitga ega bo‘lsa, u holda qator yaqinlashuvchi va bu limitning qiymati yaqinlashuvchi qator yig‘indisi deb ataladi. Agar xususiy yig‘indilar ketma-ketligi chekli limitga ega bo‘lmasa, u holda qator uzoqlashuvchi deyiladi. Amaliy masalalarni hal qilishda funksional qatorlar sinfiga tegishli bo‘lgan darajali qatorlar muhim ahamiyatga ega. Darajali qator a0 a1x a2 x2 ... an xn ...ak xk k1 ko‘rinishga ega bo‘lgan funksional qatordan iboratdir, bu yerda a0 , a1 , a2 ,..., an ,... berilgan chekli o‘zgarmas koeffitsientlarni, x esa qator o‘zgaruvchisini ifodalaydi. Tushunarliki, o‘zgaruvchisi nolga teng bo‘lgan har qanday darajali qator yaqinlashuvchidir. Odatda darajali qator o‘zgaruvchining ba’zi qiymatlarida yaqinlashuvchi, boshqalarida esa uzoqlashuvchi bo‘ladi. Ammo, shunday darajali qatorlar borki, ular o‘zgaruvchi qanday qiymatga ega bo‘lishidan qat’iy nazar yaqinlashuvchi yoki o‘zgaruvchining noldan boshqa barcha qiymatlarda uzoqlashuvchi boladi
Ehtimollar nazariyasi “tasodifiy tajribalar" , ya'ni natijasini oldindan aytib bo'lmaydigan tajribalardagi qonuniyatlarni o'rganuvchi matematik fandir. Bunda shunday tajribalar qaraladiki, ularni o'zgarmas (ya'ni, bir xil) shartlar kompleksida hech bolmaganda nazariy ravishda ixtiyoriy sonda takrorlash mumkin, deb hisoblanadi. Bunday tajribalar har birining natijasi tasodifiy hodisa ro'y berishidan iborat. Insoniyat faoliyatining deyarli xamma soxalarida shunday holatlar mavjudki, u yoki bu tajribalarni bir xil sharoitda kop marta takrorlash mumkin boladi. Ehtimollar nazariyasining sinovdan-sinovga o'tishidan natijalar turlicha bolgan tajribalar qiziqtiradi. Biror tajriba roy berish yoki bermasligini oldindan aytib bolmaydigan hodisalar tasodifiy hodisalar deyiladi. Masalan, tanga tashlash tajribasida har bir tashlashga ikki tasodifiy hodisa mos keladi. Tanganing gerb tomoni tushishi yoki tanganing raqam tomoni tushishi. Albatta bu tajribani bir marotaba takrorlashda shu ikki tasodofiy hodisalardan bittasi sodir boladi. Tasodifiy hodisalarni biz tabiatda, jamiyatda, ilmiy tajribalarda sport va qimor oyinlarida kuzatishimiz mumkin. Ehtimollar nazariyasi esa aynan mana shunday tasodifiy bogliqliklarning matematik modelini tuzish bilan shuģullaniladi. Tasodifiyat insoniyatni doimo qiziqtirib kelgan. Shu sababli ehtimollar nazariyasini boshqa matematik fanlar kabi amaliyot talablariga mos ravishda rivojlangan. Ehtimollar nazariyasi boshqa matematik fanlardan farqli o'laroq nisbatan qisqa, ammo o'ta shijoatli rivojlanish tarixiga egadir. Ommaviy tasodifiy hodisalarga mos masalalarni sistematik ravishda o'rganish va ularga mos matematik apparatning yuzaga kelishi XVII asrga togri keladi. XVII asr boshida , mahshur fizik Galiley fizik olchashlardaki xatoliklarni tasodifiy deb hisoblab, ularni ilmiy tadqiqot qilishga uringan. Shu davrda kasallanish olish, baxtsiz hodisalar statistikasi va shu kabi ommaviy tasodifiy hodisalardagi qonuniyatlarni tahlil qilishga asoslangan sug'urtalashning umumiy nazariyasini matematik ilm sifatida murakkab tasodifiy jarayonlarning o'rganishdan emas,balki eng sodda qimor o'yinlarini tahlil qilish natijasida yuzaga kela boshlagan. Shu boisdan ehtimollar nazariyasining paydo bolishi XVII asr ikkinchi yarmiga mos keladi va Paskal (1623-1662), Ferma (1601-1665) va Gyuygens (1629-1695) kabi olimlarning qimor oyinlarining nazariyasidagi tadqiqotlar bilan bogliqdir. Ehtimollar nazariyasi rivojidagi yana bir muhim qadam Yakov Bernulli(1654-1705) nomi bilan bog'liqdir.Unga, kora ehtimollar nazariyasining eng muhim qonuniyati, deb hisoblovchi “katta sonlar qonuni"tegishlidir.Ehtimollar nazariyasi rivojidagi yana bir muhim qadam de Muavr (1667-1754) nomi bilan bog'liqdir. Bu olim tomonidan normal qonun( yoki normal taqsimot) deb ataluvchi muhim qonuniyat mavjudligi sodda holda asoslab beriladi. Keyinchalik, ma'lum bo'ldiki bu qonuniyat ham, ehtimollar nazariyasida muhim ro'l o'ynar ekan. Bu qonuniyat mavjudlihini asoslovchi teoremalar “markaziy limit teoremalar deyiladi. Rhtimollar nazariyasi rivojlanishida katta hissamahshur natematik Laplasga (1749-1827) ham tegishlidir. U birinchi bolib ehtimollar nazariyasi asoslarini qat'iy va sistematik ravishda ta'rifladi, markaziy limit teoremasiming bir formasini isbotladi (Muavr-Laplas teoremasi) va ehtimollar nazariyasining bir necha tadbiqlarini keltirdi. Ehtimollar nazariyasi rivojidaki yetarlicha darajada oldinga siljish Gauss (1777-1855) nomi bilan bog'liqdir. U normal qonuniyatga yanada umumiy asos berdi va tajribadan olingan sonli ma'lumotlarni qayta ishlashning muhim usuli- “kichik kvadratlar usuli" ni yaratdi. Puasson (1781-1840) katta sonlar qonunini umumlashtiradi va ehtimollar nazariyani oq uzish masalalariga qolladi. Hning nomi bilan ehtimollar nazariyasida katta rol oynovchi taqsimot qonuni nomlangandir. XVII va XIX asrlar uchun ehtimollar nazariyasining keskin rivojlanishi va u bilan har tomonlama qiziqish harakterlidir. Keyinchalik ehtimollar nazariyasi rivojiga Rossiya olimlari V.Ya Bunyakovskiy (1804-1889) , P.L. Chebishev (1821-1894) , V.I. Ramonovskiy (1879-1954) , A.N. Kolmogorov (1903-1988) va ularning shogirdlari bebaho hissa qoshdilar. Ozbekistonda butun dunyoga taniqli Sarimsokov (1915-1995) va X.S. Sirojiddinov (1920-1988) larning muhim rollarimi alohida takidlash joizdir Download 155.21 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling