Aniq integralni


Download 297.38 Kb.
bet2/4
Sana08.10.2020
Hajmi297.38 Kb.
#132902
1   2   3   4


f (x)dx

f (xk )

2

f (xk 1 )

(xk 1 xk )

(k 0,1,2,..., n 1)


xk

taqribiy hisoblanadi. Natijada ushbu



b

f (x)dx

a

x1

f (x)dx


1
x0

x2

f (x)dx ...

x1

xn

f (x)dx


2
xn1

f (x0 )

2

f (x1 ) (x

x0 )

f (x1 )

2

f (x2 ) (x



  • x1

) ...

...

f (xn1 )

2

f (xn ) (x



  • xn1

) b a


n
2

f (x0 )

2

f (xn )



f (x1 )

f (x2 ) ...

f (xn1 )

formulaga kelamiz. Demak,

b b a f (x )

f (x)dx  [ 0

f (xn )

a

f (x1 )



n

f (x2 ) ...

2

f (xn1 )] .



(3)



  1. formula trapetsiyalar formulasi deyiladi.

  1. Bu taqribiy formulaning hatoligi

  2. Rn, f (x) funksiya [a,b]

  3. da uzluksiz

  4. f (x)



  1. hosilaga ega bo`lishi shartida ,









  1. bo`ladi.

  2. Demak,

  3. Rn

  4. (b a)


  5. 3
    12n2

  6. f 

  7. ((a, b))



  1. b

  2. f (x)dx

  3. a

  4. b a [

  5. n

  6. f (x0 )

  7. 2

  8. f (xn )

  9. 3

  10. f (x1 )

    • f (x2

  1. ) ...

  2. f (x



  3. n1

  4. )] (b a)

  5. 12n2

  6. f ().

  1. 30. Simpson formulasi. Bu holda

  2. f (x)

  3. funksiyaning



  1. b

  2. f (x)dx

  3. a



  1. integralini taqribiy hisoblash uchun

  2. [a,b]

  3. segmentni

  4. a x0 ,

  5. x1,..., x2k ,

  6. x2k 1,

  1. x2k 2 ,..., x2n2 , x2n1, x2n b

  2. nuqtalar yordamida 2n

  3. ta teng bo`lakka bo`lib, har bir



  1. [x2k , x2k 2 ]

  2. (k 0,1,2,..., n 1)

  3. bo`yicha integralni quyidagicha



  1. x2 k 2

  2. Download 297.38 Kb.

    Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling