Aniq integralni


Download 297.38 Kb.
bet3/4
Sana08.10.2020
Hajmi297.38 Kb.
#132902
1   2   3   4




  • f (x)dx

  • x2k 2

    • x2k

    1. f (x2k ) 4 f (x2k 1 )

    2. f (x2k 2 )

    1. x2 k

    2. b a

    3. 6n

    4. 6

    5. f (x2k ) 4 f (x2k 1 )



    6. f (x2k 2 )



    7. (k 0,1,..., n 1)

    1. taqribiy hisoblanadi. Natijada



    1. b x2 x4

    2. x2 n

    1. f (x)dx

    2. f (x)dx f (x)dx ...

    3. f (x)dx

    1. a x0 x2

    2. x2 n2

    1. b a [( f (x

    2. 6n 0

    3. ) 4 f (x1 )

    4. f (x2

    5. )) ( f (x2

    6. ) 4 f (x3 )

    1. f (x4 )) ... ( f (x2n2 ) 4 f (x2n1 )

    2. b a

    3. f (x2n ))]

    1. [( f (x0 )

    2. 6n

    3. f (x2n )) 4( f (x1 )

    4. f (x3 ) ...

    1. ...

    2. hosil bo`ladi. Demak,

    3. f (x2n1 )) 2( f (x2 )

    4. f (x4 ) ...

    5. f (x2n2 ))].



    1. b

    2. f (x)dx

    3. a

    4. b a





    5. 6n

    6. [ f (x0 )

    7. f (x2n ) 4( f (x1 )

    8. f (x3 ) ...



    1. ...

    2. f (x2n1 )) 2( f (x2 )

    3. f (x4 ) ...

    4. f (x2n2 ))].

    5. (4 )



    1. formula Simpson formulasi deyiladi. Bu taqribiy formulaning hatoligi



    2. Rn,





    3. f (x)



    4. funksiya





    5. [a, b]



    6. da uzluksiz

    1. f (iv) (x)

    2. hosilaga ega bo`lishi shartida,




    1. 5
      R(b a)

    2. f (iv) ()

    3. ((a,b))



    1. bo`ladi. Demak,

    2. b

    3. n









    4. b a



    5. 2880 n4

    1. f (x)dx

    2. a

    3. [ f (x0 )

    4. 6n

    5. f (x2n ) 4( f (x1 )



    6. 5

    7. f (x3 ) ...

    8. f (x2n1 ))

    1. 2( f (x2 )

    2. f (x4

    3. ) ...

    4. f (x



    5. 2n2

    6. ))] (b a)

    7. 2880 n4

    8. f (iv) ().

    1. Misol. Ushbu




    2. 2
      1

    3. еx dx

    4. 0

    1. integral to`g`ri to`rtburchaklar, trapetsiyalar va Simpson formulalari yordamida taqribiy hisoblansin.

    2. [0,1] segmentni 5 ta teng bo`lakka bo`lamiz. Bunda bo`linish nuqtalari




    1. 2
      x0 0, x1 0,2, x2

    2. 0,4, x3

    3. 0,6, x4

    4. 0,8, x5

    5. 1,0



    1. bo`lib, bu nuqtalarda

    2. f (x) ex

    3. funksiyaning qiymatlari quyidagicha bo`ladi:



    1. f (x0 ) 1,00000 ,

    2. f (x1 ) 0,96079 ,

    3. f (x2 ) 0,85214 ,

    4. f (x3 ) 0,69768 ,

    5. f (x4 ) 0,52729 ,

    6. f (x5 ) 0,36788 .

    7. Har bir bo`lakning o`rtasini ifodalovchi nuqtalar

    1. x1 0,1 ,





    2. 2

    3. x3 0,3 ,





    4. 2

    5. x5 0,5 ,





    6. 2

    7. x7 0,7 ,





    8. 2

    9. x9 0,9





    10. 2



    1. bo`lib, bu nuqtalardagi funksiyaning qiymatlari quyidagicha bo`ladi:



    2. f (x1 ) 0,99005 ,





    3. 2

    4. f (x 3 ) 0,91393 ,





    5. 2

    6. f (x5 ) 0,77680 ,





    7. 2

    8. f (x7 ) 0,61263 ,





    9. 5

    10. f (x9 ) 0,44486 .





    11. 5

    1. Download 297.38 Kb.

      Do'stlaringiz bilan baham:
    1   2   3   4




    Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
    ma'muriyatiga murojaat qiling