Particle Swarm Optimization algorithm:
346
pop
size
: population size (number of particles)
347
𝑤𝑤 ∈ [0,1]: inertia component weight
348
𝛼𝛼, 𝛽𝛽 ∈ [0,1]: social and personal best component weights
349
𝑋𝑋
𝑖𝑖
𝑤𝑤
𝑚𝑚𝑚𝑚𝑆𝑆 𝑉𝑉
𝑖𝑖
𝑤𝑤
𝑤𝑤𝑚𝑚𝑡𝑡ℎ 1 = 1, … , 𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑖𝑖𝑠𝑠𝑝𝑝
𝑚𝑚𝑚𝑚𝑆𝑆 𝑘𝑘 = 1, … , 𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖
𝑚𝑚𝑐𝑐𝑚𝑚
: position and velocity of particle i in
350
iteration k.
351
𝑋𝑋
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
: global best position during the process, according to the fitness function
352
𝑋𝑋
𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
: best position or particle i during the process, according to the fitness function
353
𝑉𝑉
𝑖𝑖
𝑤𝑤
= 𝑤𝑤𝑉𝑉
𝑖𝑖
𝑤𝑤
+ 𝛼𝛼 𝑖𝑖𝑚𝑚𝑚𝑚𝑆𝑆(0,1)�𝑋𝑋
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
− 𝑋𝑋
𝑖𝑖
𝑤𝑤
� + 𝛽𝛽 𝑖𝑖𝑚𝑚𝑚𝑚𝑆𝑆(0,1)(𝑋𝑋
𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
− 𝑋𝑋
𝑖𝑖
𝑤𝑤
): velocity vector for
354
particle i in iteration k.
355
𝑋𝑋
𝑖𝑖
𝑤𝑤+1
= 𝑋𝑋
𝑖𝑖
𝑤𝑤
+ 𝑉𝑉
𝑖𝑖
𝑤𝑤
: update of particle positions
356
Fitness function (proximity to ideal solution):
357
𝐶𝐶
𝑗𝑗
�𝑋𝑋
𝑖𝑖
𝑤𝑤
� 𝑗𝑗 = 1, … ,9: normalized values of the decision criteria in each particle
358
𝑆𝑆
+
(𝑋𝑋
𝑖𝑖
𝑤𝑤
): distance from the positive ideal solution of criteria values of particle i.
359
𝑆𝑆
−
(𝑋𝑋
𝑖𝑖
𝑤𝑤
): distance from the anti-ideal solution of criteria values of particle i.
360
𝐹𝐹�𝑋𝑋
𝑖𝑖
𝑤𝑤
� =
𝑝𝑝
−
(𝑋𝑋
𝑖𝑖
𝑘𝑘
)
𝑝𝑝
−
(𝑋𝑋
𝑖𝑖
𝑘𝑘
)+𝑝𝑝
+
(𝑋𝑋
𝑖𝑖
𝑘𝑘
)
− 𝑃𝑃𝑖𝑖𝑚𝑚𝑚𝑚𝑃𝑃𝑡𝑡𝑃𝑃�𝑋𝑋
𝑖𝑖
𝑤𝑤
�: relative closeness of particle with respect to ideal
361
solution with a penalty if constraints are violated.
362
363
Objective: maximize the fitness function F(X).
364
365
Constraints:
366
𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝑤𝑤) ≤ 𝑃𝑃𝑖𝑖𝑝𝑝𝑆𝑆
𝑤𝑤
�𝑋𝑋
𝑖𝑖
𝑤𝑤
� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝑤𝑤) 𝑤𝑤𝑚𝑚𝑡𝑡ℎ 𝑤𝑤 = 1, … , 𝑁𝑁
𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝
: commercial or operational
367
constraints for week w.
368
where
369
𝑃𝑃𝑖𝑖𝑝𝑝𝑆𝑆
𝑤𝑤
(𝑋𝑋) = ∑
𝐻𝐻𝑚𝑚𝑖𝑖𝐻𝐻𝑖𝑖𝐻𝐻𝑡𝑡
𝑋𝑋
(𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖, 𝑤𝑤)
𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝=1
: this represents the sum of amounts harvested in
370
week w according to plan X.
371
Do'stlaringiz bilan baham: |