Article in International Journal of Energy and Power Engineering · January 013 doi: 10. 11648/j ijepe. 20130204. 11 Citations reads 6,109 All content following this page was uploaded by Aashay Tinaikar on 03 December 2018


 Material Selection for Heat Exchangers


Download 239.05 Kb.
Pdf ko'rish
bet5/6
Sana04.02.2023
Hajmi239.05 Kb.
#1157793
1   2   3   4   5   6
Bog'liq
Ocean Thermal Energy Conversion

3.1.5. Material Selection for Heat Exchangers 
Two heat exchanger systems, evaporators and condensers, 
comprise a large part of the total capital cost for an OTEC 


International Journal of Energy and Power Engineering 2013; 2(4): 143-146 
145 
power plant. The current system design calls for titanium 
plate-and-frame heat exchangers, which comprise about 
one-quarter of the $150 million capital cost for a proposed 
10 MW closed-cycle plant-ship. Maintenance and 
replacement costs for this heat exchanger subsystem can be 
estimated at roughly 10% of the exchanger cost and will 
occur twice during the exchanger’s 30-year expected 
lifetime. According to OCEES International, demand for 
titanium has increased greatly in recent years, which is 
reflected in higher material costs and decreased availability 
for heat exchangers. For these two reasons, it is desirable to 
find an alternative to titanium exchangers. Aluminium, 
steels, and polymers have all been evaluated to some extent 
as candidate materials in previous research. However, 
material advancements applicable to new OTEC heat 
exchangers have been made primarily in the field of 
thermally conductive polymers. Thus, polymer exchangers 
were chosen because they represent an under-developed and 
novel portion of the heat exchanger market.
4. Location of OTEC Plant 
Except for closed basins, such as the Mediterranean and 
Red Seas, deep seawater flows from the polar regions: polar 
water, which represents up to 60% of all seawater, originates 
mainly from the Arctic for the Atlantic and North Pacific 
Oceans, and from the Antarctic (Weddell Sea) for all other 
major oceans. Therefore, Tc at a given depth, approximately 
below 500 m, does not vary much throughout all regions of 
interest for OTEC. It is also a weak function of depth, with a 
typical gradient of 1°C per 150 m between 500 m and 1000 
m. These considerations may lead to regard Tc as nearly 
constant, with a value of 4°C at 1000 m. 
Two facts require caution, however, during the OTEC site 
selection process:1) OTEC is very sensitive to any loss of 
thermal resource, and 2) the Cold Water Pipe is a costly plant 
component. Consequently, variations in Tc that appear to be 
small may have a drastic impact on the performance and/or 
the capital cost of the OTEC plant. For Example, Pacific 
Ocean deep (1000 m) water at low latitudes is
Figure3. OTEC favorable zones 
colder by about 1°C than Atlantic Ocean deep water; in the 
case of the East Coast of Africa, various phenomena 
including mixing with Red Sea outflow elevate the Indian 
Ocean water temperature (at 1000 m depth) to more than 
6°C. As for the optimal depth at a given land-based OTEC 
site, seafloor bathymetry and topography play an important 
role and some degree of thermo-economic optimization is 
required. 

Download 239.05 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling