Automated and accurate real estate valuation benefits buyers and sellers in real estate markets


Download 12.55 Kb.
Sana14.11.2023
Hajmi12.55 Kb.
#1772342
Bog'liq
Automated and accurate real estate valuation benefits buyers and sellers in real estate markets


Automated and accurate real estate valuation benefits buyers and sellers in real estate markets. So far, the literature on expert systems for real estate valuation has primarily focused on structured features like the age of the building or the number of rooms. The description of the property presents another rich source of information, which received comparably less attention. In this study, we evaluate several machine learning models in predicting real estate prices using different numeric representations of the property descriptions. Our empirical evaluation, based on rental apartments offers in Berlin (N = 30,218) and house purchase offers in Los Angeles (N = 33,610), shows that the best approach achieves mean absolute errors (MAE) of 1.01e monthly rent per square meter and 114.84$ per square foot, respectively. Including the property description into the best model reduces the MAE by up to 17.09 percent over the respective baseline models. In addition, we find that the benefit of including textual features of real estate descriptions only weakly depends on the description length. However, the benefit is comparatively less pronounced for rental apartment offers of low prices per square meter. We finally shed light on how the models arrive at decisions by visualizing description embeddings and presenting Shapley additive explanations.

Katharina Baur 2023-yilda “Mulk tavsiflaridan foydalangan holda mashinaviy o'qitish modellari asosida ko'chmas mulkni baholashni avtomatlashtirish”nomli maqolasidaKo'chmas mulkni avtomatlashtirilgan va aniq baholash ko'chmas mulk bozorlaridagi xaridorlar va sotuvchilarga foyda keltirishi, hozirgacha ko'chmas mulkni baholash bo'yicha ekspert tizimlariga oid adabiyotlar, birinchi navbatda, binoning yoshi yoki xonalar soni kabi tuzilgan xususiyatlarga e'tibor qaratishi lekin mulkning boshqa tavsiflaridan foydalanishga kam e’tibor berilganligini ta’kidladi. Tadqiqotda ko'chmas mulk tavsiflarining turli raqamli ko'rinishlaridan foydalangan holda ko'chmas mulk bahosini bashorat qilishda bir nechta mashinaviy o'qitish modellarini baholadi. Berlindagi (n = 30 218) va Los-Anjelesdagi ko’chmas mulk baholari(n = 33 610) asosidagi empirik baholashga ko’chmas mulk tavsifini kiritish bilan MAE ko’rsatkichini 17 foizgacha kamaytirishga erishdi.
Download 12.55 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling