B. Abdurahmonov Toshkent–2008 2 B. Abdurahmonov. Matematik induksiya metodi
-teorema. n = 2 da: (4.7.2) tensizlikningchap qismi: 2! 2 =
Download 482.86 Kb. Pdf ko'rish
|
Matematik induksiya metodi @aniq fan
- Bu sahifa navigatsiya:
- 1-teorema. n = 3 da: (4.7.4) tengsizlikning chapqismi: 3! 6 = ;
1-teorema. n = 2 da:
(4.7.2) tensizlikningchap qismi: 2! 2
= (4.7.2) tengsizlikning o’ng qismi: 2 2
3 9 2, 25 2 2 4 + = = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ . 2 < 2,25 bo’lganligi sababli 1-teorema isbotlandi.
da
(4.7.2) tengsizlikning bajarilishi berilgan: 2 ,
1 ! ≥ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + < k k k k .
n = k+ 1 da quyidagi tengsizlikning bajarilishini isbotlash lozim: 2 , 2 2 ! ) 1 ( 1 ≥ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +
< + + k k k k .
= +
⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + < + ⋅ = + ) 1 ( 2 1 ) 1 ( ! ! ) 1 ( k k k k k k
1 2 2 + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + k k songa ko’paytiramiz va bo’lamiz < + + ⋅ ⋅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +
= + ⋅ ⋅ + ⋅ + ⋅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +
= + + + + + + 1 1 1 1 1 1 ) 2 ( ) 1 ( 2 2 2 ) 2 ( 2 2 ) 1 ( ) 1 ( 2 2
k k k k k k k k k k k k k k
35
1 ) 2 ( ) 1 ( 2 1 1
+ +
+ +
k k k tengsizlikning bajarilishini isbotlaymiz. 1 1
1 1 1 1 1 2 1 2 2 ) 2 ( ) 1 ( 2 + + + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + ⋅ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + = + + ⋅ k k k k k k k k k . 2 1 1 1 .... 2 ) 1 ( 1 ! 2 ) 1 ( 1 1 1 1 1 1 1 0 > + + + + + ⋅ ⋅ + + + + + = + + + > ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛
k k k k k k k k . 1 2 1 2 2 1 2 2 1 1 1 1 1 1 1 = ⋅ < ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + ⋅ ⇒
⎟ ⎠
⎜ ⎝ ⎛ + + ⇒ + +
k k k k . 1 1 2 2 1 2 2 + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +
= ⋅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +
< k k k k . 2-teorema isbotlandi. Matematik induksiya prinsipiga ko’ra (4.7.2) tengsizlik ixtiyoriy 2 ≥ n
natural son uchun bajariladi. (4.7.3) tengsizlikni isbotlaymiz. 1-teorema. n = 3 da : (4.7.3) tengsizlikning chap qismi:
3! 6 36 = =
. (4.7.3) tengsizlikning o’ng qismi: 3 2
27 = . Bo’lganligi uchun 27 36 > 1-teorema isbotlandi. 2-teorema. (4.7.3) tengsizlikning n = k da bajarilishi berilgan: 3 ,
2 ≥ > k k k k .
1 da quyidagi tengsizlikning bajarilishini isbotlaymiz : 3 , ) 1 ( ! ) 1 ( 2 1 ≥ + > + +
k k k .
36
1 1 1 1 2 2 2 2 2 2 1 1 2 2 2 ( 1) ( 1) ( 1)! ! ( 1) ( 1) ( 1) ( 1) ( 1) k k k k k k k k k k k k k k k k k k k + + + + ⋅ + ⋅ + = ⋅ + > ⋅ + ⋅ = + ⋅ > + + ⋅
(4.6) masalada . 3 , ) 1 ( 1 ≥ ∀ + > + n n n n n tengsizlik isbotlangan. Bu tengsizlikdan quyidagi tengsizlik hosil qilinadi: . 3 , ) 1 ( 2 2 1 ≥ ∀ + > + n n n n n
n = k uchun quyidagini hosil qilamiz: 1 1
1 1 2 2 2 2 2 2 1 2 2 1 ( 1) (
1) 1 ( 1) ( 1) 1 ( 1) ( 1)
k k k k k k k k k k k k + + + > + ⋅ + ⎛ ⎞ > + ⋅ = + ⋅ + > + ⎜ ⎟ ⎝ ⎠ + ⋅ . 2-teorema isbotlandi. Matematik induksiya prinsipiga ko’ra (4.7.3) tengsizlik ixtiyoriy 3 ≥ n natural son uchun bajariladi. (4.7.4) tengsizlikni isbotlaymiz.
da: (4.7.4) tengsizlikning chapqismi: 3! 6 =
(4.7.4)tengsizlikning o’ng qismi: 3 1
2 4 − = . 6 > 4 bo’ganligi sababli 1-teorema isbotlandi. 2-teorema. (4.7.4) tengsizlik n = k da bajarilishi berilgan:
3
2 ! 1 ≥ ∀ > − k k k .
n = k+ 1 da tengsizlikning bajarilishini isbotlash losim: 3 ,
! ) 1 ( 1 1 ≥ > + − +
k k .
N
3 , 2 2 1 2 ) 1 ( 2 ) 1 ( ! ! ) 1 ( 1 1 ≥ > + ⋅ = + ⋅ > + ⋅ = + > − . 2-teorema isbotlandi. . Matematik induksiya prinsipiga ko’ra (4.7.4) tengsizlik ixtiyoriy 3 ≥
natural son uchun bajariladi. (4.7.5) tengsizlikni isbotlaymiz. 1-teorema. n = 1da 1 1
1 ! 1 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ < < ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ e e tengsizlikka ega bo’lamiz. 1- teorema isbotlandi.
37
2-teorema. (4.7.5) tengsizlik ning n=k da o’rinli ekanligi berilgan: ! 2
k k k k e e ⎛ ⎞
⎛ ⎞ < < ⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎝ ⎠ . n = k+1 da tengsizlikni isbotlash lozim: 1 1
1 ( 1)! 2 k k k k k e e + + + + ⎛ ⎞ ⎛ ⎞ < +
⎜ ⎟
⎟ ⎝ ⎠ ⎝ ⎠ . Isbotlash. Ushbu tengsizlikning o’ng qismini isbotlaymiz. 1 1
1) 1 ( 1)! ( 1) ! (
1) 1
k k k k k k k e k k k k e e k e + + ⎛ ⎞ + ⋅⎜ ⎟
+ ⎛ ⎞
⎛ ⎞ ⎝ ⎠ + = + ⋅ >
+ ⋅ = = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ + ⎛ ⎞ ⎜ ⎟ ⎝ ⎠
1 1 1 1 1 (4.2.4) 1 ( 1) 1 1 ( 1) 1 1 k k k k k k k k e k k k e k e k e e e k e k + + + + + < + + ⋅ ⋅ + + ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = = ⋅ > ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + ⋅ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ + ⎜ ⎟ ⎝ ⎠
(4.7.5) tengsizlikning o’ng qismini isbotlaymiz. = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +
⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ < ⋅ + = + + + 1 1 2 1 2 2 1 2 ! ) 1 ( ! ) 1 (
k k k k k k e k e k k k
1 1 1 1 1 2 1 2 ( 1) 1 2
k k k k k e e k k + + < ≤ + + ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = ⋅ ⋅ < ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + + ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 2-teorema isbotlandi. Matematik induksiya prinsipiga ko’ra (4.7.5) tengsizlik ixtiyoriy n natural son uchun bajariladi.
>1 da (4.7.2) va e n n < ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + 1 1 quyidagini hosil qilamiz:
38
1 1 1 1 2 ! 2 2 2 2 2
n n n n n n n n n n n n e e e n e n e ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎝ ⎠ ⎛ ⎞
⎜ ⎟ ⎝ ⎠
+ + + < = ⋅
⋅ = ⋅
⋅ < ⋅ ⋅ . 4.8-masala. Tengsizliklarni isbotlang:
1
2 ... . 2 2 1,
n n ildiz x n N + = + + +
< + ∀ ∈ ; (4.8.1) N n x ildiz n n ∈ ∀ < + + + = , 3 4 .... 4 4 . (4.8.2) (4.8.1) tengsizlikni isbotlaymiz. 1-teorema. n = 1 da 2 1 2 2 2 2 2 1 ( 2 1) 2 1
x = + < + + = + = + ega bo’lamiz. 1- teorema isbotlandi. 2-teorema. n = k uchun (4.8.1) tengsizlik berilgan : 1 2 2 ...
2 2 1 + < + + + = + k k x .
1 2
... 2 2 2 1 + < + + + = + +
k k x .
1 2 1
2 2 2 ... 2 2 2 1 2 2 2 1 2 1
k k ildiz x +
+ +
+ + +
< + + < + + =
+
2-teorema isbotlandi. Matematik induksiya prinsipiga ko’ra (4.8.1) tengsizlik ixtiyoriy n natural son uchun bajariladi. (4.8.2) tengsizlikni isbotlaymiz.
1 4 9 3 x =
= ega bo’lamiz. 1-teorema isbotlandi. 39
2-teorema. n = k da (4.8.1) tengsizlikning o’rinli ekanligini berilgan: 3 4 .... 4 4 < + + + = ildiz k k x .
3 4
4 4 1 1 < + + + = + +
k k x .
1 4
4 4 3
7 3 1
x k ildiz + = + + + < + =
< +
2-teorema isbotlandi. Matematik induksiya prinsipiga ko’ra (4.8.2) tengsizlik ixtiyoriy n natural son uchun bajariladi.
. 6
, 6 5 ! 5 5 ! 5 5 5 ≥ ∈ ∀ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ≤ − n N n n n n (4.9) 1-teorema. n = 6 da:
. 6 5 ! 5 5 ! 6 5 5 6 5 6 − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = ega bo’lamiz.1-teorema isbotlandi. 2-teorema. 6 , 6 5 ! 5 5 ! 5 5 5 ≥ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ≤ − k k k k . tengsizlikning bajarilishi berilgan. Quyidagi tengsizlikning bajarilishini isbotlash lozim: 5 1 5 1 6 5 ! 5 5 ! ) 1 ( 5 − + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ≤ +
k k .
Download 482.86 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling