Bajardi: Ziyodullayeva Dilnoza
Download 379.66 Kb.
|
Ziyodullayeva Dilnoza (3)
O‘ZBEKISTON RESPUBLIKASI AXBOROT TEXNOLOGIYALARI VA KOMMUNIKATSIYALARINI RIVOJLANTIRISH VAZIRLIGI MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI 1-Amaliy topshiriq. Guruh: 715_21Bajardi:Ziyodullayeva DilnozaTekshirdi: Ochilov Mannon Toshkent 2023 21-variant
https://colab.research.google.com/drive/1E1a6NJBO38SQp5OYZpvd3agmhUOeUby2#scrollTo=SM67CQhZ88_H import numpy as np import matplotlib.pyplot as plt dataset = np.array([ [6.6, 3.2, 90], [6.4, 4, 87], [6.5, 2.5, 85], [6, 4, 83], [5.9, 3, 82], [5.8, 2.5, 80], [5.7, 3, 78], [5.5, 3, 77], [5.4, 2.5, 75], [5.2, 2, 72], [5, 4, 68], [4.8, 3, 67.5], [4, 3, 67], [3.8, 4, 65], [3.7, 3, 64], [3.5, 4, 63], [3.3, 3, 61], [3.2, 2.5, 59], [3, 3, 57], [2.8, 3, 55] ]) #Datasetdagi 2 ta xususiyatni o’zaro bog’laymiz( mashina holati va mashina narxini) x= dataset[:,0] y = dataset[:,-1] print(x)
plt.figure(figsize=(6,3)) plt.scatter(x,y,marker="s", color="r") plt.xlabel("mashina holati") plt.ylabel("mashina narxi") plt.title("Datasetdagi mashina narxining mashina holatiga bog'liqligi") plt.grid() plt.show() Polinomial darajasi 2 bo’lgan hol uchun: p = np.polyfit(x,y,2) reg_model = np.poly1d(p) yNew = reg_model(x) plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plt.scatter(x,y,marker="s", color="r", label = "original data") plt.xlabel("mashina holati") plt.ylabel("mashina narxi") plt.title("Dataset") plt.grid() plt.subplot(1,2,2) plt.plot(x,yNew, color = "b", label = "reg model") plt.xlabel("mashina holati") plt.ylabel("mashina narxi") plt.title("Regression model") plt.grid() plt.legend() plt.show() Polinomial darajasi 3 bo’lgan hol uchun: p = np.polyfit(x,y,3) reg_model = np.poly1d(p) yNew = reg_model(x) Polinomial darajasi 6 bo’lgan hol uchun: p = np.polyfit(x,y,6) reg_model = np.poly1d(p) yNew = reg_model(x) SKLEARN
from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import numpy x = dataset[:,0] y = dataset[:,2] X=x.reshape(-1,1) #degree=1 , polinomial darajasi 1 bo’lgan hol uchun poly_reg = PolynomialFeatures(degree=1) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() pol_reg.fit(X_poly, y) plt.figure(figsize=(6,3)) plt.scatter(X, y, color='red') plt.xlabel("mashina holati") plt.ylabel("mashina narxi") plt.title("Regression model") plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') plt.grid() plt.show() from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import numpy x = dataset[:,0] y = dataset[:,2] X=x.reshape(-1,1) #degree=3 , polinomial darajasi 3 bo’lgan hol uchun poly_reg = PolynomialFeatures(degree=3) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() pol_reg.fit(X_poly, y) plt.figure(figsize=(6,3)) plt.scatter(X, y, color='red') plt.xlabel("mashina holati") plt.ylabel("mashina narxi") plt.title("Regression model") plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') plt.grid() plt.show() from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import numpy x = dataset[:,0] y = dataset[:,2] X=x.reshape(-1,1) #degree=6 , polinomial darajasi 6 bo’lgan hol uchun poly_reg = PolynomialFeatures(degree=6) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() pol_reg.fit(X_poly, y) plt.figure(figsize=(6,3)) plt.scatter(X, y, color='red') plt.xlabel("mashina holati") plt.ylabel("mashina narxi") plt.title("Regression model") plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') plt.grid() plt.show() https://colab.research.google.com/drive/1E1a6NJBO38SQp5OYZpvd3agmhUOeUby2#scrollTo=SM67CQhZ88_H Download 379.66 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling