Balancing decoding speed and memory usage for Huffman codes using quaternary tree
Download 1.78 Mb. Pdf ko'rish
|
Habib-Rahman2017 Article BalancingDecodingSpeedAndMemor
- Bu sahifa navigatsiya:
- Keywords
- Quaternary tree architecture
- Tree construction Huffman codes to binary data
- Table 1 Codeword generation using binary Huffman principle Character Frequency Code
- Huffman codes to quaternary data
- Table 2 Codeword generation using quaternary Huffman principle Character Frequency Code
- Comparison of binary and quaternary tree
- Table 3 Comparison of binary and quaternary tree Parameter Binary tree Quaternary tree
- Experimental environment
- Table 4 Data set S/L File name Description File size (bytes)
- Table 5 Decoding performance of the proposed method and regular Huffman-based Technique S/N Source file File size
- Huffman (QH) Regular Huffman-based techniques (RH) (Chowdhury et al. 2002 )
- Time in millisecond Source (Before Compression) file size in bytes Decoding Time Comparison Fig. 3
- Performance test with reknown corpus and recent Huffman-based techniques
- Table 6 Compression performance of the proposed technique and regular Huffman-based technique Source file Space (byte)
- ((OS − RH) * 100)/OS Original size (OS) Quaternary Huffman (QH)
- Table 7 Comparison of the proposed technique with recent Huffman-based techniques for Enwik (The Enwik8 Corpus. http://mattmahoney.net/dc/text.html
- Table 8 Comparison of the proposed technique with recent Huffman-based techniques for Canterbury corpus Method/algorithm Space (MB) Compression
- Time enhancement with respect to Zopfli (%)
- Competing interests
Balancing decoding speed and memory usage for Huffman codes using quaternary tree Ahsan Habib * and Mohammad Shahidur Rahman Background Huffman ( 1952 ) presented a coding system for data compression at I.R.E conference in 1952 and informed that no two messages will consist of same coding arrangement and the codes will be produced in such a way that no additional arrangement is required to specify where a code begins and ends once the starting point is known. Since that time Huffman coding is not only popular in data compression but also image and video com- pression (Chung 1997
). Schack ( 1994
) described in his paper that codeword lengths of both Huffman and Shanon–Fano have similar interpretation. Katona and Nemetz ( 1978 )
word length. In another research, Hashemian ( 1995 ) introduced a new compression technique with the clustering algorithm. In this new type of algorithm, he claimed that it required mini- mum storage whereas the speed for searching of symbol will be high. He also conducted experiment on video data and found his method very efficient. Chung ( 1997
) intro- duced an array-based data structure for Huffman tree where the memory requirement is 3n − 2 . He also proposed a fast decoding algorithm for this structure and claimed that the memory size can be reduced from 3n − 2 to 2n − 3, where n is the number of sym- bols. To attain more decoding speed with compact memory size, Chen et al. ( 1999
) pre- sented a fast decoding algorithm with Olog n time and ⌈ 3n 2
n 2 log n⌉ + 1 memory
space. Abstract In this paper, we focus on the use of quaternary tree instead of binary tree to speed up the decoding time for Huffman codes. It is usually difficult to achieve a balance between speed and memory usage using variable-length binary Huffman code. Quaternary tree is used here to produce optimal codeword that speeds up the way of searching. We analyzed the performance of our algorithms with the Huffman-based techniques in terms of decoding speed and compression ratio. The proposed decod- ing algorithm outperforms the Huffman-based techniques in terms of speed while the compression performance remains almost same.
compression Open Access © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Habib and Rahman Appl Inform (2017) 4:5 DOI 10.1186/s40535-016-0032-z *Correspondence: ahabib-cse@sust.edu Shahjalal University of Science and Technology, Sylhet, Bangladesh Page 2 of 15 Habib and Rahman Appl Inform (2017) 4:5 Banetley et al. ( 1986
) introduced a new compression technique that is quite close to Huffman technique with some implementation advantages; it requires one-pass over the data to be compressed. Sharma ( 2010
) and Kodituwakku and Amarasinghe ( 2011
) have presented that Huffman-based technique produces optimal and compact code. How- ever, the decoding speed of this technique is relatively slow. Bahadili and Hussain ( 2010
) presented a new bit level adaptive data compression technique based on ACW algo- rithm, which is shown to perform better than many widely used compression algorithms in terms of compression ratio. Hermassi et al. ( 2010 ) showed how a symbol can be coded by more than one codeword having the same length. Chowdhury et al. ( 2002
) presented a new decoding technique of self-styled static Huffman code, where they showed a very efficient representation of Huffman header. In paper, Suri and Goel ( 2011
) focused on the use of ternary tree, where a new one-pass algorithm for decoding adapting Huffman codes is implemented. Fenwick ( 1995 ) in his research showed that the Huffman codes do not improve the code efficiency at all time. It shows that the performance is always declining when mov- ing to the lower extension to higher extension. Szpankowski ( 2011 ) and Baer ( 2006 ) explained the minimum expected length of fixed-to-variable lossless compression with- out prefix constraint. Huffman principle, which is well known for fixed-to-variable code, is used in Kavousianos ( 2008 ) as a variable-to-variable code. A new technique for online compression in networks has been presented by Vitter ( 1987
) in his paper. Habib et al. ( 2013 ) introduced Haffman code in the field of database compression. Gallager ( 1978
) explained four properties of Huffman codes—sibling property, upper bound property, codeword length property and symbol frequency property. He also proposed an adaptive approach of Huffman coding. Lampel and Ziv ( 1977 ) and Welch ( 1984 ) described a cod- ing technique for any kind of source symbol. Lin et al. ( 2012
) worked on the efficiency of Huffman decoding, where authors first transform the basic Huffman tree to recursive Huffman tree, and then the recursive Huffman algorithm decodes more than one symbol at a time. In this way, it achieves more decoding speed. Google Inc. recently released a compression tool named Zopfli (Alakuijala and Vandevenne 2013
) and claimed that Zopfli yields the best compression ratio. In summary, it is revealed in the literature that using binary Huffman code it is dif- ficult to achieve a balance between speed and memory usage. In this paper, we focus on the use of quaternary tree instead of binary tree that speeds up decoding time. Here, we employ two algorithms for encoding and decoding quaternary Huffman codes for the implementation of our proposed technique. When compared with the Huffman-based techniques, the proposed decoding algorithm exhibits excellent performance in terms of speed while the compression performance remains almost same. In this way, the pro- posed technique offers a way to balance between the decoding time and memory usage. We have organized the paper as follows. In “ Quaternary tree architecture ” section, tra- ditional binary Huffman decoding technique in data management systems is presented. The overview of our proposed architecture with encoding and decoding techniques is also presented in this section. The implementation technique has been described in “ Implementation ” section. The experimental results have been thoroughly discussed in “ Result and discussion ” section and finally “ Conclusion ” section concludes the paper.
Page 3 of 15 Habib and Rahman Appl Inform (2017) 4:5 Quaternary tree architecture The main contribution of this research is to implement a new lossless Huffman-based compression technique. The implementation of the algorithms has been explained with some mathematical foundations. Finally, implemented algorithms have been tested using real data.
Huffman’s scheme uses a table of frequency to produce codeword for each symbol (Wiki- pedia short history of Huffman coding 2011
). This table consists of every symbol of entire document and its respective frequency is arranged in ascending order. Accord- ing to the frequency of distinct symbol, each symbol has a variable-length bit string and all the bit strings are distinct. Table 1 shows the variable-length codeword for different symbols of the sentence “This is an example of quaternary Huffman tree.” Consider a set of source symbols S = {s 0 , s
1 , . . . , s n− 1
Space, a, . . . , y, .} with fre- quencies W = {w 0 , w 1 , . . . , w n− 1
for w 0 ≥ w 1 ≥ . . . ≥ w n− 1 , where the symbol s i has fre- quency w i and n is the number of symbols. The codeword c i , 0 ≤ i ≤ n − 1, for symbol s i
i , when goes to left it writes ‘0’ and when goes to right it writes ‘1’. If the level of the root is zero, then the code- word length can be determined as the level of s i . The traversing time of a tree depends on its weighted path length w i l i , which is expected to be minimum. The Huffman tree for the source symbols {s 0 , s 1 , . . . , s 18 }
the above example is shown in Fig. 1 . The codeword set C{c 0 , c
1 , . . . , c 18 }
{ 000, 010, . . . , 11101} , respectively, is shown in Table 1 . Table 1 Codeword generation using binary Huffman principle Character Frequency Code Space
8 000
A 6 010 E 5 101 T 3 1000 N 3 1001 F 3 0110 R 3 0111 H 2 1101 I 2 00110 S 2 00111 M 2 00100 U 2 00101 X 1 11001 P 1 110000 L 1 110001 O 1 11110 Q 1 11111 Y 1 11100 . 1 11101 Page 4 of 15 Habib and Rahman Appl Inform (2017) 4:5 Huffman codes to quaternary data Quaternary tree or 4-ary tree is a tree in which each node has 0–4 children (labeled as LEFT child, LEFT MID child, RIGHT MID child, RIGHT child). Here for constructing codes for quaternary Huffman tree, we use 00 for left child, 01 for left-mid child, 10 for right-mid child, and 11 for right child. The process of the construction of a quaternary tree is described below: • List all possible symbols with their probabilities; • Find the four symbols with the smallest probabilities; • Replace these by a single set containing all four symbols, and the probability of the parent is the sum of the individual probabilities. • Replicate the procedure until it has one node. The code word generated using quaternary Huffman technique is shown in Table 2 .
0 , s
1 , . . . , s n− 1
Space, a, . . . , y, .} with fre- quencies W = {w 0 , w 1 , . . . , w n− 1
for w 0 ≥ w 1 ≥ . . . ≥ w n− 1 , where the symbol s i has fre- quency w i and n is the number of symbols. The codeword c i , 0 ≤ i ≤ n − 1, for symbol s i
i , when goes to left it writes ‘00’, when goes to left mid writes ‘01’, when goes to right mid writes ‘10’ and when goes to right writes ‘11’. The codeword length of a symbol can simply be calculated as the level of s i . We know that the traversing time of a tree depends on its weighted path length w i l i , and it is expected to be minimum. The quaternary Huffman tree for Fig. 1 Construction of binary Huffman tree Page 5 of 15 Habib and Rahman Appl Inform (2017) 4:5 the source symbols {s 0 , s 1 , . . . , s 18 }
above example (“This is an example of quaternary Huffman tree.”) is shown in Fig. 2 . The codeword set C{c 0 , c 1 , . . . , c 18 }
shown in Table 2 . Table 2 Codeword generation using quaternary Huffman principle Character Frequency Code Space
8 00 A 6 0100
E 5 0101 T 3 0110 N 3 0111 F 3 1000 R 3 1001 H 2 1010 I 2 1011 S 2 1100 M 2 1101 U 2 111000 X 1 111001 P 1 111010 L 1 111011 O 1 111100 Q 1 111101 Y 1 111110 . 1 111111 Fig. 2 Construction of quaternary Huffman tree along with decoding table Page 6 of 15 Habib and Rahman Appl Inform (2017) 4:5 Comparison of binary and quaternary tree Table
3 shows some comparisons with some mathematical parameters for the previous example.
Encoding and decoding time of a tree depends on the weighted path length of a tree. If n is the number of distinct character, L i is code length of the ith character, and f i is the
frequency of the ith character, then we can write the required traversing time T as where L
i = α
i · K , α i ∞ 1 f i , K = arity = 2, for quaternary tree, and α i = height constant Thus, the traversing time also depends on the height of the tree and frequency of dif- ferent symbols. The height of a quaternary tree is always smaller than the height of a binary tree. For this reason, traversing time will be reduced for a petite tree. The structure of header tree for decoding is very simple for the proposed technique. According to Fig. 2 , it does not require to store the entire codeword in the header tree for a symbol. The most frequent symbol is stored first in the header which confirms faster decoding. Moreover, retrieving two bits at a time during decoding process also speeds up the process. In the decoding phase, matching (two bits at a time) from encoded bit string with the header starts from level 1 in the header tree. If there is any symbol with codeword of length 2, then it will be found in level 1 in the header tree. Likewise, match- ing a symbol with codeword of length 4 both the level 1 and level 2 have to be searched. The simplicity of the header tree also contributes to speed up the decoding process.
As mentioned earlier, in quaternary tree each node has 0–4 children (labeled as LEFT child, LEFT MID child, RIGHT MID child, and RIGHT child). There are basically two components in quaternary Huffman coding: • Quaternary Huffman encoding • Quaternary Huffman decoding T ∞ n
i= 1 L i f i T ∞K n i= 1 α i f i Table 3 Comparison of binary and quaternary tree Parameter Binary tree Quaternary tree Level
6 3 Total node 37 25 Internal node 18 6 Weighted path length 190 97
Page 7 of 15 Habib and Rahman Appl Inform (2017) 4:5 Encoding algorithm Encoding is a two-pass problem. The first pass is to determine the frequencies of letters. We use this information to create the quaternary Huffman tree. We have used a diction- ary to store the frequencies of the symbols. When a quaternary Huffman code has been generated, the symbol will be replaced by the code. This is a modification of Huffman algorithm (Coreman et al. 2001 ).
Page 8 of 15 Habib and Rahman Appl Inform (2017) 4:5 In line 1, we assign the unordered nodes, C in the queue, Q and later we take the count of nodes in Q and assign it to n. We assign the value of n to a new variable i. In line 4, we start iterating all the nodes in queue to build the quaternary tree until the count of i is greater than 1 which means that there are nodes still left to be added to the parent. In line 5, a new tree node, z is allocated. This node will be the parent node of the least frequent nodes. In line 6, we extract the least frequent node from the queue Q and assign it as a left child of the parent node z. The EXTRACT-MIN (Q) function returns the least frequent node from the queue and removes it from the queue as well. In line 7, we take the next least frequent node from the queue and assign it as a left-mid child of the parent z. From line 8 to 17, we check the value of i or the number of nodes left in the queue Q. If i equals 2, the frequency of the parent node z, f [z] will be the summation of the fre- quency of node v, f [v] and the frequency of node w, f [w]. Likewise, for i is equal to 3, we extract another least frequent node from the queue and add it as a child and add its frequency to the parent node. For i is greater than 3, we extract two least frequent nodes and add them as right-mid and right child of the parent z and add their frequency to the parent z as well. In line 18, we insert the new parent node z into the queue, Q. In line 19, we take the count of the queue, Q and assign it to i again. The loop continues until a sin- gle node is left in the queue. Finally, we return the last and single node from the queue Q as a quaternary Huffman tree.
Decoding is accomplished by reading the encoded data two bits at a time. When iterat- ing the bit stream 00 bit pattern means go LEFT, 01 pattern means go LEFT MID, 10 pattern means go RIGHT MID and 11 pattern means go RIGHT in case of quaternary tree. When a bit pattern matches with a symbol according to the header tree, replace the bit pattern with that symbol and the process is iterated until reached the last bit of the stream. In the following algorithm 2 in line 1, we assign the quaternary tree T in the local vari- able ln. Then, we take the total count of bits in n from B. In line 3, we initialize a local variable i with 0 which will be used as a counter. In line 4, we started iterating all the bits in B. As it is a quaternary tree, we have at most four leaves for a parent node: left, left-mid, right-mid, right and 00, 01, 10, 11 represent these leaf nodes, respectively. We take two bits at a time. EXTRACT-BIT(B) returns a bit from the bit array B and removes it from B as well. In lines 5 and 6, local variables b1 and b2 are being assigned with two extracted bits from the bit array B.
Page 9 of 15 Habib and Rahman Appl Inform (2017) 4:5 From line 7 to line 15, we check the extracted bits to traverse the tree from the top. If the bits are 00, we take the left child of the parent ln and assign it to ln itself. For 01, we replace the parent ln with its left-mid child, for 10 we replace it with its right-mid child and for 11 we replace it with the right child. In line 16, we get the key of the replaced ln and assign it in k. Then, we check whether k has any value. If the k has any value, we write the value of the k in the output and update the ln with the quaternary tree T itself. In line 21, we increase the value of i by 2 and the loop gets continued and reads the next two bits. This section discusses the encoding and decoding technique of a quaternary Huffman architecture. The search time for finding a source symbol using quaternary Huffman algorithm is O(log 4 n) , whereas for Huffman-based algorithm it is O(log 2 n) . Page 10 of 15 Habib and Rahman Appl Inform (2017) 4:5 Results and discussion To verify the applicability and feasibility of the proposed quaternary-based technique, experimental evaluation has been performed on real data. The experimental results are compared with regular Huffman-based techniques. Our target was to justify query time and the storage requirements in comparison with regular Huffman-based techniques.
Each query has been executed five times and the average execution time has been counted. The experiments are conducted on a machine with following specifications:
We have used four real text files as data set. The first two files are the source code of our implemented programs, which we do not wish to share as it is still unpublished. The other two files used for evaluation are readily available online (The famous lgpl 2.1 license. https://www.gnu.org/licenses/lgpl-2.1.txt ; The transcript of the movie matrix. http://thematrixtruth.remoteviewinglight.com/ ). The description of the datasets is given in Table 4 .
S/L File name Description File size (bytes) 1 Quaternary-source.txt The source code of the quaternary Huffman implementation 9861
2 Quaternary-license.txt The license file of the quaternary Huffman implementation 18,651
3 Lgpl-2.1.txt The famous lgpl 2.1 license 27,032
4 The-matrix-transcript.txt The transcript of the movie matrix 46,836
Page 11 of 15 Habib and Rahman Appl Inform (2017) 4:5 Decoding performance To measure the decoding performance, we used the dataset on both regular and qua- ternary Huffman techniques. We consider three techniques as regular Huffman-based techniques (Chung 1997 ; Hashemian 1995 ; Chowdhury et al. 2002 ) and the performance of all three techniques is almost same considering next integer number. We used the StopWatch Class under System.Diagnostic of Mono framework to calculate the time required. Stopwatch provides a set of methods and properties that can be used to accu- rately measure elapsed time. The obtained results are described in Table 5 . In all cases, we took the average output of at least five runs. Four source files of different file size have been used altogether to measure the per- formance. In Table 5 , it has been observed that for each case, quaternary Huffman tech- nique is more than 50% faster than the regular Huffman-based techniques in case of decoding time. In Fig. 3 , it has been shown that as file size increases, the quaternary Huffman (line with diamond shape dot) technique is performing consistently better than the regu- lar Huffman (line with square dot)-based techniques. In some cases depending on the Table 5 Decoding performance of the proposed method and regular Huffman-based Technique S/N Source file File size (bytes) Time (ms) Enhancement rate over regular binary ((RH − QH) * 100)/RH Quaternary Huffman (QH) Regular Huffman-based techniques (RH) (Chowdhury et al. 2002 ) 1 Quaternary- source.txt 9861
3 7 57.14 2 Quaternary- license.txt 18,651
6 12 50.00 3 Lgpl-2.1.txt 27,032 7
56.25 4 The-matrix- transcript.txt 46,836
12 27 55.56 0 5 10 15 20 25 30 35 40 45 9861
18651 27032
46836 quaternary- source.txt quaternary- license.txt Lgpl-2.1.txt the-matrix- transcript.txt Time in millisecond Source (Before Compression) file size in bytes Decoding Time Comparison Fig. 3 Decoding time comparison. Line with diamond shape dot indicates quaternary Huffman and line with square dot indicates regular Huffman-based technique Page 12 of 15 Habib and Rahman Appl Inform (2017) 4:5 relative frequencies of the symbols in a file, it is more than two times faster than regular Huffman-based techniques. To measure the memory usage, we used the dataset on both regular and quaternary Huffman techniques. The method described in Chen et al. ( 1999 ) is used for comparison with the proposed method. Table 6 illustrates the compression rate between two tech- niques. It has been shown that the quaternary technique compresses the original file at an average rate of 32%, whereas the regular Huffman-based technique compresses at an average rate of 39%. Regular Huffman-based technique compresses little better than the proposed quaternary technique, this is just because of quaternary technique produced larger codeword. In some cases, the compression rate is almost equal for both techniques. The comparison of the compression performance of both techniques using the origi- nal file is also shown in Fig. 4 [ash color column indicates original file size, black column indicates regular Huffman-based technique (Chen et al. 1999
) and texture column indi- cates quaternary Huffman technique]. Performance test with reknown corpus and recent Huffman-based techniques We compare the performance of the proposed technique with Zopfli (Alakuijala and Vandevenne 2013
), WinZip ( 2016
) and PKZip ( 2016
) algorithms. Google claims that Table 6 Compression performance of the proposed technique and regular Huffman-based technique Source file Space (byte) Enhancement rate (Quaternary) ((OS − QH) * 100)/OS Enhancement rate (regular) ((OS − RH) * 100)/OS Original size (OS) Quaternary Huffman (QH) Huffman-based technique (RH) (Chen et al. 1999 ) Quaternary- source.txt 9861
6958 6347
29.44 35.64
Quaternary- license.txt 18,651 13,520
10,930 27.51
41.40 Lgpl-2.1.txt 27,032 16,042
15,840 40.66
41.40 The-matrix- transcript.txt 46,836
30,909 27,816
34.01 40.61
0 5000
10000 15000
20000 25000
30000 35000
40000 45000
50000 quaternary- source.txt quaternary- license.txt Lgpl-2.1.txt the-matrix- transcript.txt File s ize aer compression Samples Compression Comparison Fig. 4 Side-by-side compression comparison. Ash color column indicate original file size, black column indi- cate regular Huffman-based technique, and texture column indicate quaternary Huffman technique Page 13 of 15 Habib and Rahman Appl Inform (2017) 4:5 Zopfli produces the highest compression ratio for similar technique. Zopfli uses Huff- man coding to replace each value with a string of bits. WinZip and PKZip are the most widely used recent Huffman-based compression tools. In all cases, we took the average output of five runs. Table 7
on the Enwik8 corpus. The Enwik8 corpus is a 95.3-MB file with 156 distinct characters. This corpus is prepared as a large text compression standard, which have 100 million bytes of English Wikipedia. The result indicates that compression ratio is highest for Zopfli but the compression and decompression speed is very slow. The Zopfli requires over 400 s whereas all other techniques require less than 200 s. If we would compromise between time–space, and when speed is the main factor, then we may choose quaternary technique for this type of large corpus. Table 8
on the Canterbury corpus (The Canterbury Corpus. http://corpus.canterbury.ac.nz/ resources/cantrbry.zip ). The Canterbury corpus is 2.67-MB file with 72 distinct charac- ters. This corpus is a modified version of Calgary corpus which is designed to test the compression algorithms. If we observe the result, it has been shown that compression ratio is highest for Zopfli but its compression and decompression speed is very slow. The Zopfli requires over 13 s whereas all other techniques require less time. In this section, we have analyzed both techniques thoroughly with different example in terms of time and space. For decoding speed, the proposed quaternary technique
Quaternary 49.67 47.88
186.88 59.66
WinZip 35.2
63.06 187.65
59.49 PKZip
34.5 63.80
195.21 57.86
Zopfli 33.37
64.98 463.26
– Table 8 Comparison of the proposed technique with recent Huffman-based techniques for Canterbury corpus Method/algorithm Space (MB) Compression enhancement with respect to origi- nal file (%) Compression–decom- pression time (s) Time enhancement with respect to Zopfli (%) Quaternary 1.71 35.95
1.37 89.78
WinZip 0.71
73.40 5.61
46.471 PKZip
0.69 74.15
2.74 21.26
Zopfli 0.64
76.07 13.36
– Page 14 of 15 Habib and Rahman Appl Inform (2017) 4:5 outperforms the regular Huffman-based techniques. On the other hand, the compres- sion recital is almost similar for most of the files. Conclusion A new lossless compression technique based on Huffman principle is implemented in this paper. We introduced quaternary tree instead of binary tree in Huffman principle. We have shown that representation of Huffman code using quaternary tree is more beneficial than Huffman code using binary tree in terms of processing speed with an insignificant increase in required space. When speed is the main factor, then the quaternary tree based tech- nique performs better than the binary tree based technique. Thus, the proposed technique provides a way to balance between the decoding time and memory usage. Authors’ contributions The authors discussed the problem and the solutions proposed all together. Both authors participated in drafting and revising the final manuscript. Both authors read and approved the final manuscript.
Authors are grateful to ministry of posts, telecommunications and information technology, People’s Republic of Bangla- desh for their grant to do this research work. The authors would like to thank the anonymous experts for their valuable comments and suggestion for improving the quality of this research paper. Competing interests The authors declare that they have no competing interests. Availability of data The datasets supporting of this article are available online in the following link. The famous lgpl 2.1 license, Accessed at https://www.gnu.org/licenses/lgpl-2.1.txt The transcript of the movie Matrix. Accessed at http://thematrixtruth.remoteviewinglight.com/ The Enwik8 Corpus. Accessed at http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/enwik8.zip The Canterbury Corpus. Accessed at http://corpus.canterbury.ac.nz/resources/cantrbry.zip The WinZip compression tool, version 1.0.220.1, released by WinZip Computing, S.L., A Corel Company. Accessed at: http://www.winzip.com/win/en/downwz.html The PKZip compression tool, version 14.40.0028, released by PKWARE Inc. Accessed at https://www.pkware.com/pkzip Funding All the funding provided by the Ministry of Posts, Telecommunications and Information Technology, People’s Republic of Bangladesh [Order No: 56.00.0000.028.33.007.14 (part-1)-275, date: 11.05.2014; and Order No: 56.00.0000.028.33.025.14- 115, date 10.05.2015]. The above funding gives the financial support for the designing of the study and conducting experiments. Received: 13 December 2016 Accepted: 26 December 2016 References Alakuijala J, Vandevenne L (2013) Data compression using Zopfli. Google Inc. https://zopfli.googlecode.com/file/Data_ compression_using_Zopfli.pdf Baer M (2006) A general framework for codes involving redundancy minimization. IEEE Trans Inf Theory 52:344–349 Bahadili HA, Hussain SM (2010) A bit-level text compression scheme based on the ACW algorithm. Int J Autom Comput 7(1):123–131 Benetley JL, Sleator DD, Tarjan RE, Wei VK (1986) A locally adaptive data compression scheme. Commun ACM 29(4):320–330 Chen HC, Wang YL, Lan YF (1999) A memory-efficient and fast Huffman decoding algorithm. Inform Process Lett 69:119–122 Chowdhury RA, Kykobad M, King I (2002) An efficient decoding technique for Huffman codes. Info Process Lett 81:305–308 Chung KL (1997) Efficient Huffman decoding. Inform Process Lett. 61:97–99 Coreman TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. The MIT Press, England Fenwick PM (1995) Huffman code efficiencies for extensions of sources. IEEE Trans Commun 43:163–165 Gallager RG (1978) Variations on a theme by Huffman. IEEE Trans Inf Theory 24(6):668–674 Habib A, Hoque ASML, Hussain MR (2013) H-HIBASE: compression enhancement of HIBASE technique using Huffman coding. J Comput 8(5):1175–1183 Hashemian R (1995) Memory efficient and high-speed search Huffman coding. IEEE Trans Comm 43(10):2576–2581 Page 15 of 15 Habib and Rahman Appl Inform (2017) 4:5 Hermassi H, Rhouma R, Belghith S (2010) Joint compression and encryption using chaotically mutated Huffman trees. Commun Nonlinear SciNumerSimulat 15:2987–2999 Huffman DA (1952) A method for construction of minimum redundancy codes. Proc IRE 40(1952):1098–1101 Katona GOH, Nemetz TOH (1978) Huffman codes and self information. IEEE Trans Inform Theory 22(3):337–340 Kavousianos X (2008) Test-data compression based on variable-to-variable Huffman encoding with codeword reusability. IEEE Trans Comput Aided Des Integr Circuits Syst 27:1333–1338 Kodituwakku SR, Amarasinghe US (2011) Comparison of lossless data compression algorithms for text data. Indian J Comput Sci Eng 1(4):416–426 Lampel A, Ziv J (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23:337–343 Lin YK, Huang S-C, Yang CH (2012) A fast algorithm for Huffman decoding based on a recursion Huffman tree. J Syst Softw 85:974–980 Schack R (1994) The length of a typical Huffman codeword. IEEE Trans Inform Theory 40(4):1246–1247 Sharma M (2010) Compression Using Huffman Coding. Int J Comput Sci Netw Secur 10(5):133–141 Suri PR, Goel M (2011) Ternary tree and memory-efficient Huffman decoding algorithm. Int J Comput Sci Issues 8(1):483–489 Szpankowski W (2011) Minimum expected length of fixed-to-variable lossless compression without prefix constraints. IEEE Trans Inf Theory 57:4017–4025 The PKZip compression tool, version 14.40.0028, released by PKWARE Inc., accessed at https://www.pkware.com/pkzip . Accessed 19 July 2016 The WinZip compression tool, version 1.0.220.1, released by WinZip Computing, S.L., A Corel Company. http://www. winzip.com/win/en/downwz.html . Accessed 19 July 2016 Vitter JS (1987) Design and analysis of dynamic Huffman code. J ACM 34(4):825–845 Welch TA (1984) A technique for high-performance data compression. IEEE Comput 17(6):8–19 Wikipedia short history of Huffman coding. http://en.wikipedia.org/wiki/Huffman_coding . Accessed 31 July 2011 Document Outline
Download 1.78 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling