Bir va ikki tur sirt integrallari va uni hisoblash usullari reja: Birinchi tur sirt integralining ta’rifi Birinchi tur sirt integralini hisoblash


Birinchi va ikkinchi tur sirt integrali ta’rifi, xossalari, uni hisoblash. Stoks formulasi


Download 0.54 Mb.
bet5/17
Sana09.04.2023
Hajmi0.54 Mb.
#1344347
1   2   3   4   5   6   7   8   9   ...   17
Bog'liq
BIR VA IKKI TUR SIRT INTEGRALLARI VA UNI HISOBLASH USULLARI

7. Birinchi va ikkinchi tur sirt integrali ta’rifi, xossalari, uni hisoblash. Stoks formulasi.
Birinchi tur egri chiziqli integrallar oddiy aniq integrallarning qanday umumlashtirilishi bo`lsa, birinchi tur sirt integrallari ham ikki karrali integrallarining shunday tabiiy umumlashtirilishidir. Bizga bo`lakli silliq kontur bilan chegaralangan ikki tomonli silliq (yoki bo`lakli silliq) sirt berilgan bo`lib, funksiya shu sirtda aniqlangan bo`lsin. (S) sirtni tarzda o`tkazilgan egri chiziqlar to`ri yordamida qismlarga ajratamiz. ning yuzasini deb belgilaymiz .Har bir da nuqta olib integral yig`indini tuzamiz va deb belgilaymiz. Ta’rif. Agar mavjud va chekli bo`lib, I ning qiymati (S) sirtning bo`linish usuli hamda nuqtalarning tanlanishiga bog`liq bo`lmasa, u holda I ga funksiyadan (S) sirt bo`yicha olingan 1-tur sirt integralideyiladi va
kabi belgilanadi.
Teorema. Agar sirt ushbu
ko`rinishda berilgan bo`lib, va
bo`lsa, u holda bo`ladi.
Stoks va Gauss-Ostrogradskiy formulalari.
bo`lib, bo`lakli silliq egri chiziq va ning tekisligiga proyeksiyasi bo`lsin.
Faraz qilaylik, (S) sirtda uzluksiz funksiyalar aniqlangan bo`lib, bu funksiyalarning barcha birinchi tartibli xususiy hosilalari (S) sirtda uzluksiz bo`lsin.
Teorema. (Stoks). Agar yuqoridagi shartlar bajarilsa, u holda ushbu

Stoks formulasio`rinli bo`ladi.
Shunday qilib, Stoks formulasi (S) sirt bo`yicha olingan 2-tur sirt integrali bilan shu sirtning chegarasi bo`yicha olingan egri chiziqli integralni bog`lovchi formuladir.
8. Kompleks sonlarning moduli va argumenti. Kompleks sonlar ustida amallar. Kompleks sonning trigonometrik va koʻrsatkichli shakli.
Ta`rif: kompleks son deb ma`lum bir tartibda berilgan bir juft va haqiqiy sonlarga aytiladi va quyidagicha yoziladi: .
Yoki ko`rinishidagi songa ham kompleks son deyilib, bu kompleks sonning algebraik ko`rinishi deyiladi. Bunda va haqiqiy sonlar mos ravishda kompleks sonning haqiqiy va mavhum qismi deb yuritiladi va quyidagicha simvol bilan belgilanadi: , (Realis va Imaginarius – lotincha so`zlar bo`lib, haqiqiy va mavhum demakdir)
Ushbu va ko`rinishidagi sonlar o`zaro qo`shma kompleks sonlar deyiladi. – mavhum birlik bo`lib, Shuning uchun: , , ,

Download 0.54 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling