Birinchi tur sirt integrali


Download 1.47 Mb.
bet7/9
Sana28.12.2022
Hajmi1.47 Mb.
#1017875
1   2   3   4   5   6   7   8   9
Bog'liq
Quralov Nurbek

1-ta'rif. Ushbu
(1)
yig ‘indi funksiyaning integral yig’indisi yoki Riman yig’indisi deb ataladi.
sirtning shunday
(2)
Bo ‘linishlarni qaraymiz ,ularning mos diametrlaridan tashkil topgan

Ketma –ketlik nolga intilsin . Bundan bo ‘linishlarga nisbatan funksiyaning integral yig ‘indilarni tuzamiz.Natijada sirtning (2) bo ‘linishlarga mos integral yig ‘indilar qiymatlaridan iborat quydagi ketma-ketlik hosil bo ‘ladi.

2-ta’rifma-ketligi.Agar (S) sirtning har qanday (2) bo ‘linishlar ketma-ketligi
olinganda ham unga mos integral yig ‘indi qiymatlaridan iborat ketma –ketlik nuqtalarni tanlab olinishiga bog ‘liq bo ‘lmagan holda,
hamma vaqt bitta I songa intilsa,bu I yig ‘indining limiti deb ataladi va u
(3)
Kabi belgilanadi.
Integral yig ‘indining limitini quydagich ham ta’riflash mumkin.
3-ta’rif.Agar son olinganda ham ,shunday topilsaki,(S) sirtning diametri bo ‘lgan har qanday bo ‘linishi hamda har bir bo ‘lakdan olingan ixtiyoriy lar uchun

Tengsizlik bajarilsa , u holda I son yig ‘indining limiti deb ataladi va (3) kabi belgilanadi.
4-ta’rif.Agar da f(x,y,z) funksiyaning integral yig ‘indisi chekli limitga ega bo ‘lsa f(x,y,z ) funksiya (S) sirtning bo ‘yich integrallanuvchi (Riman ma’nosida integrallanuvchi )funksiya deb ataladi. Bu yig ‘indining chekli limiti I esa f(x,y,z) funksiyaning birinchi tur sirt integrali deyiladi va u

Kabi belgilanadi.Demak ,

Endi birinchi tur sirt integralining mavjud bo ‘lishini ta’minlaydigan shartni toppish bilan shug ‘ulanamiz.
Faraz qilaylik fazodagi (S) sirt
z=z(x,y)
tenglama bilan berilgan bo ‘lsin .Bunda z=z(x,y) funksiya chegaralangan yopiq (D) sohada uzluksiz va hosilalarga ega hamda bu hosilalar ham (D)da uzluksiz.

Download 1.47 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling