Bo‘linish belgilari bilan tanishish va ularga doir qiziqarli misollar yechish. Bo‘linish belgilari bilan tanishish va ularga doir qiziqarli misollar yechish


Download 0.87 Mb.
Sana18.10.2020
Hajmi0.87 Mb.
#134284
Bog'liq
5-dars Bo'linish belgisi. Qoldiqli bo`lish

Matematika


Mavzu: Bo‘linish belgilari. Qoldiqli bo‘lish.

O‘qituvchi: Tohirjon Umrzoqov

M1. Bo‘linish belgilari bilan tanishish va ularga doir qiziqarli misollar yechish.

M1. Bo‘linish belgilari bilan tanishish va ularga doir qiziqarli misollar yechish.

M2. Qoldiqli bo‘lishga doir misol va masalalar bilan tanishish.

M3. Bezu teoremasi va Fermaning kichik teoremalari bilan tanishish.


DARSNING MAQSADI

OLDINGI DARSGA BIR NAZAR!

Oldingi darslarimizda biz hisoblashga oid misollar bilan tanishgan edik. Ularning xossalaridan foydalanib, turli xil misol va masalalarni yechib o‘tdik.

Bugungi darsimizda esa o‘tgan darsga asoslangan holda yanada qiziqarli mavzuni “Bo‘linish belgilari. Qoldiqli bo‘lish” mavzusini ko‘rib chiqamiz.


Bo‘linish belgilari

yig‘indining 2 ga va 5 ga bo‘linishini ko‘rsating

 

Yechish: yig‘indining 2 ga va 5 ga bo‘linishini ko‘rsatish uchun uni 10 ga bo‘linishini ko‘rsatish kifoya.



Bezu teoremasiga asosan va bolsa, yigindi ga bolinadi.

yig‘indi ham yig‘indiga bo‘linadi. . Bundan ko‘rinadiki, yig‘indi ham 10 ga bo‘linadi.

 

1-misol


2-misol

ornidagi raqamni toping

 

Yechish: Bizga ma’lumki, 19! soni 9 ga qoldiqsiz bo‘linadi. Chunki 19!=1·2·3·4·5·6·7·8·9·10·…·18·19 bundan kelib chiqadiki, soni ham 9 ga qoldiqsiz bo‘linadi. 9 ga bo‘linish belgisidan:

.

soni 9 ga bo‘linishi uchun bo‘lishi kerak.



Javob:

 

Bo‘linish belgilari



3 - misol

va raqamlar yig‘indisi 7 ga qoldiqsiz bo‘linadi. Agar ko‘rinishidagi 3 xonali sonlarni 7 ga bo‘lganda bir xil qoldiq qolsa, shu qoldiqni toping.

 

Yechish: sonini quyidagi ko‘rinishga keltiramiz.

Bundan ko‘rinadiki, bo‘lganda soni 7 ga qoldiqsiz bo‘linadi.

Qodiq 0 ga teng.

 

Masalan: 343, 525, 252, 161, 616, …



QOLDIQLI BO‘LISH

4- misol

Yechish:

m => 7+7+7+7+7=35; 35 ni 9 ga bo‘lsak qoldiq 8

n => 5+5+5+5+5+5+5=35 35 ni 9 ga bo‘lsak qoldiq 8

Demak, m+n => 8+8=16

16 ni 9 ga bo’lsak qoldiq 7

J: q(7)

m=77777 va n=5555555. m+n ni 9 ga bo‘lgandagi qoldiqni toping.

QOLDIQLI BO‘LISH

QOLDIQLI BO‘LISH

MATNLI MASALALAR


5- misol

Buning uchun soning darajasini pasaytirib ko‘rinishga keltirib olamiz.

formulaga asosan ko‘rinishga keltiramiz. Bundan qoldiq: 1

 

Quyidagi sonini 8 ga bo‘lgandagi qoldiqni toping.

 

QOLDIQLI BO‘LISH


6-misol

sonini 101 ga bo‘lgandagi qoldiqni toping

 

Fermaning kichik teoremasi: va EKUB(a, p)=1 ga teng bo‘lsa, ni p ga bo‘lgandagi qoldiq 1 ga teng bo‘ladi.



Yechish:

Bu yerda , , EKUB(3,101)=1



Fermaning kichik teoremasiga murojaat qilsak, natijada qoldiq 1 ga tengligini ko‘rishimiz mumkin.

 

QOLDIQLI BO‘LISH



7-misol

ni tub ko‘paytuvchilarga ajratganimizda p- tub sonning darajasi quyidagiga teng.

 

bu yerda [a] - a sonning butun qismi



 

natural sonlar bo‘lsa, ning eng katta qiymatini toping. 2

 

= 78



ni hosil qilishimiz mumkin.

 

QOLDIQLI BO‘LISH


MATNLI MASALALAR


QOLDIQLI BO‘LISH

8-misol

Ushbu ko‘paytma nechta

0 (nol) bilan tugaydi?

 

Buning uchun ning oxiri nechta nol bilan tugashini topib olamiz.



Endi sonlar ko‘paytmasi nechta nol bilan tugashini topamiz. Bu yerda [ ]-sonning butub qismi

 

503 ta



124 ta

379 ta


Javob: 379 ta nol bilan tugaydi.

MATNLI MASALALAR


MUSTAQIL ISHLASH UCHUN TOPSHIRIQLAR

1. (M1) n raqamining qanday qiymatlarida soni 9 ga qoldiqsiz bo'linadi? A) 2 B) 4 C) 6 D) 9

2. (M1) n raqamining qanday qiymatlarida besh xonali son 11 ga qoldiqsiz bo'linadi? A) 6 B) 4 C) 2 D) 7

3. (M1) 6237 soniga nisbatan quyidagi tasdiqlardan qaysi biri to‘g‘ri?



A) 39 ga qoldiqsiz bo‘linadi B) tub son

C) 18 ga qoldiqsiz bo‘linadi D) 21 ga qoldiqsiz bo‘linadi

4. (M1) x = 0,4951015; у = 0,537 108 va z = 0,4953 1014 sonlardan qaysilari 15 ga qoldiqsiz bo‘linadi?



A) faqat x va z B) faqat у C) barchasi D) faqat x va у

5. (M3) 320 ni 7 ga bo'lgandagi qoldiqni toping. A) 6 B) 3 C) 1 D) 2

 

MUSTAQIL ISHLASH UCHUN TOPSHIRIQLAR

6.(M3) 36455468 sonni 2, 4, 5, 10 va 25 ga bo‘lganda hosil bo‘ladigan qoldiqlar yig‘indisini toping? A) 18 B) 29 C) 15 D) 14

7.(M2) m=34628108 va n=546576. m+n ni 9 ga bo‘lgandagi qoldiqni toping. A) 6 B) 4 C) 2 D) 7

8.(M2) va raqamlar yig‘indisi 13 ga qoldiqsiz bo‘linadi. Agar ko‘rinishidagi 3 xonali sonlarni 13 ga bo‘lganda bir xil qoldiq qolsa, shu qoldiqni toping. A) 0 B) 4 C) 2 D) 11

9.(M3) Quyidagi sonini 7 ga bo‘lgandagi qoldiqni toping.

A) 1 B) 2 C) 4 D) 6

10.(M3) o‘rnidagi raqamni toping: 11!=399*6800



A) 6 B) 3 C) 1 D) 2

 

MUSTAQIL ISHLASH UCHUN TOPSHIRIQLAR


DARSNI YAKUNLASH

Bugungi darsimizda Bo‘linish belgilari. Qoldiqli bo‘lish mavzusini bilan tanishdek.

Bu mavzu orqali biz murakkab masalalarni Bezu teoremasi, Fermaning kichik teoremalari yordamida hal qilish mumkinligini ko‘rib chiqdik.


FOYDALANILGAN ADABIYOTLAR RO‘YXATI
  • M.A.Mirzaahmedov, Sh.N.Ismoilov, A.Q. Amanov “Matematika) 6-sinf darsligi. Toshkent – 2015.
  • Matematika I, II, III qismlar Oliy o‘quv yurtlariga kiruvchilar uchun uslubiy qo‘llanma. Toshkent “Turon-Iqbol” 2015y.
  • www.eduportal.uz – Multimedia markazi axborot ta’lim portali.
  • DTM-2019

Mirmuhamedova Faridaxon – Toshkent shahar Bektemir tumani 292-maktab matematika fani o‘qituvchisi. Taqdimot Baxodir Xaydarov umumiy tahriri ostida tayyorlandi.


TAQDIMOTNI TAYYORLAGANLAR

E’TIBORINGIZ UCHUN RAHMAT!


Matematika
Download 0.87 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling