Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Partie. Analyse algébrique. Oeuvres complètes d'Augustin Cauchy, publiés sous la direction scientifique de l'Académie des Sciences (IIe série, tome III). Paris: Gauthier-Villars. [Original work published in Paris: Debure frères, 1821] Cauchy, A. L. (1899). Résumé des leçons données à l'École Royale polytechnique sur le calcul infinitésimal. Oeuvres complètes d'Augustin Cauchy, publiés sous la direction scientifique de l'Académie des Sciences (IIe série, tome IV, pp. 5-261). Paris: Gauthier- Villars. [Original work published in Paris: L'Imprimerie Royale, 1823] Crelle, A. L. (1845). Encyklopädische Darstellung der Theorie der Zahlen und einiger an- derer damit in Verbindung stehender analytischer Gegenstände; zur Beförderung und all- gemeineren Verbreitung des Studiums der Zahlenlehre durch den öffentlichen und Selbst- Unterricht (Vol. 1). Berlin: Reimer. DuBois-Reymond, E. (1974). Kulturgeschichte und Naturwissenschaft. In S. Wollgast (Ed.), E. Du Bois-Reymond, Vorträge über Philosophie und Gesellschaft (pp. 105-158). Hamburg: Meiner. [Original work published 1877] Eccarius, W. (1974). Der Techniker und Mathematiker August Leopold Crelle (1780-1855) und sein Beitrag zur Förderung und Entwicklung der Mathematik im Deutschland des 19. Jahrhunderts. Unpublished doctoral dissertation, Eisenach. Euler, L. (1922). Introductio in analysin infinitorum. Tomus primus. In F. Rudio, A. Krazer, A. Speiser, & L. G. du Pasquier (Eds.), Opera Omnia (Ser. I, Vol. 8). Leipzig/Berlin: Teubner. [Original work published in Lausanne: Bousquet, 1748] Gillispie, C. (1977). Die Naturwissenschaft der Industrie. In E. A. Musson (Ed.), Wissenschaft, Technik und Wirtschaftswachstum (pp. 137-152). Frankfurt/Main: Suhrkamp. Humboldt, W. von (1964a). Der Königsberger und der Litauische Schulplan. In A. Flitner & K. Giel (Eds.), W.von Humboldt: Werke IV (2nd ed., pp. 168-195). Darmstadt: Wissenschaftliche Buchgesellschaft. [Original work published 1809] Humboldt, W. von (1964b). Über die innere und äußere Organisation der höheren wis- senschaftlichen Anstalten in Berlin. In A. Flitner & K. Giel (Eds.), W. von Humboldt, Werke IV (2nd ed., pp. 255-266). Darmstadt: Wissenschaftliche Buchgesellschaft [Original work published 1810] Jahnke, H. N. (1990a). Die algebraische Analysis im Mathematikunterricht des 19. Jahrhunderts. Der Mathematikunterricht, 36(3), 61-74. HANS NIELS JAHNKE Jahnke, H. N. (1990b). Mathematik und Bildung in der Humboldtschen Reform. Göttingen: Vandenhoeck & Ruprecht. Klein, F. (1907). Vorträge über den mathematischen Unterricht an den höheren Schulen. Bearbeitet von R. Schimmack. Theil 1: Von der Organisation des mathematischen Unterrichts. Leipzig: Teubner. Koppe, C. (1866). Der mathematische Lehrplan für das Gymnasium. Schulprogramm. Soest. Lagrange, J. L. (1797/1881). Théorie des fonctions analytiques. In M. J.-A. Serret (Ed.), Oeuvres (Vol. IX). Paris: Gauthier-Villars. [Original work published 1797] Müller, D. K. (1977). Sozialstruktur und Schulsystem. Aspekte zum Strukturwandel des Schulwesens im 19. Jahrhundert. Göttingen: Vandenhoeck & Ruprecht. Müller, J. H. T. (1838). Lehrbuch der Mathematik, Vol. 1: Lehrbuch der allgemeinen Arithmetik für Gymnasien und Realschulen, nebst vielen Uebungsaufgaben und Excursen. Halle: Buchhandlung des Waisenhauses. Mushacke, E. (1858). Anweisung ueber die Einrichtung der oeffentlichen allgemeinen Schulen im preussischen Staate. Preussischer Schulkalender, 7,231-259. Neigebauer, J. F. (1835). Die Preußischen Gymnasien und höheren Bürgerschulen. Eine Zusammenstellung der Verordnungen, welche den höheren Unterricht in diesen Anstalten umfasssen. Berlin/Posen/Bromberg: Mittler. Nizze, E. (1822). Zweck und Umfang des mathematischen Unterrichts auf Gymnasien. Schulprogramm. Gymnasium Stralsund. Pahl, F. (1913). Geschichte des naturwissenschaftlichen und mathematischen Unterrichts. Leipzig: Quelle & Meyer. Paulsen, F. (1897). Geschichte des gelehrten Unterrichts auf den deutschen Schulen und Universitäten vom Ausgang des Mittelalters bis zur Gegenwart (Vol. 2, 2nd ed.). Berlin: Veit Tellkampf, A. (1829). Vorschule der Mathematik. Berlin: A. Rücker. White, L. A. (1959). The evolution of culture. New York: McGraw-Hill. 429 MATHEMATICS AND IDEOLOGY Richard Noss London 1. IDEOLOGY AND THE CURRICULUM It is far from clear why mathematics and ideology are related in any way. Mathematics deals with the aesthetic and the theoretical. Ideology deals with the political and the pragmatic. So let me begin by stating that I view ideology as the body of ideas through which we see and with which we construct our reality. It makes the world intelligible, and people's be- haviours predictable, understandable. To claim that mathematics is a social construction, rather than, say, a rep- resentation of reality, is no longer as contentious as it once was. But the (school) mathematics curriculum too is socially constructed, and has, for example, changed its character many times in the last century or so since compulsory education was introduced into the "developed" world. In both cases – mathematics and maths (I use the latter term to save distinguishing continually between mathematics and school mathematics) – there is an overwhelming temptation to view the subject matter as given, inevitable, natural. From where does this apparent "naturalness" arise? There are many possi- ble answers to such a question, but two polarized extremes are evident. One would argue that the curriculum (and the discipline) is as it is because of the inherent structures of the subject; that mathematics is, in a sense, preor- dained to be as it is, given that it provides an idealized means of describing and predicting the material world. While such a view has some credence vis-à-vis mathematics, it is more difficult to sustain with regard to maths. The other extreme would view the discipline and the curriculum as essen- tially arbitrary, creations of people acting independently and autonomously, without any constraints imposed from the material reality of which they form a part. It is clear that there is scope for a range of intermediate positions, and a full examination would take us too far into philosophical domains. As far as maths is concerned, I begin from the premise that the curriculum, if not arbitrary, is socially constructed, and that a valid task for researchers in the field is to denaturalize the form and content of what is taught. And so to ideology. Ideology flows from the social relations that exist R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline, 431-441. © 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. within a society (which is not to say it is determined by them), and corre- spondingly functions to help maintain (or destroy) those relations. At any Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling